Advertisement

Astrocytes pp 247-254 | Cite as

Glial Pathology in Major Depressive Disorder: An Approach to Investigate the Coverage of Blood Vessels by Astrocyte Endfeet in Human Postmortem Brain

  • Grazyna RajkowskaEmail author
  • Jose Javier Miguel-Hidalgo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

Double immunohistochemistry and confocal microscopy permits to detect the coverage of blood vessels by astrocytic endfeet in human postmortem brain tissue. Here we describe double immunofluorescent staining for detecting a colocalization of a marker of astrocytic processes (labeled with an antibody for aquaporin-4 (AQP4) and a marker for blood vessels (labeled with an antibody to collagen IV). Then, we present a microscopic analysis of the coverage of blood vessels by astrocytic processes using Nikon C1 confocal microscope, Photoshop, and ImageJ software.

Key words

Immunofluorescence Confocal microscopy Astrocytes Blood vessels Aquaporin-4 Collagen IV 

References

  1. 1.
    Rajkowska G, Hughes J, Stockmeier CA, Miguel-Hidalgo JJ, Maciag D (2013) Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73:613–621CrossRefGoogle Scholar
  2. 2.
    Carney RM, Freedland KE, Jaffe AS (2001) Depression as a risk factor for coronary heart disease mortality. Arch Gen Psychiatry 58:229–230CrossRefGoogle Scholar
  3. 3.
    Carney RM, Freedland KE (2003) Depression, mortality, and medical morbidity in patients with coronary heart disease. Biol Psychiatry 54:241–247CrossRefGoogle Scholar
  4. 4.
    Alexopoulos GS, Buckwalter K, Olin J, Martinez R, Wainscott C, Krishnan KR (2002) Comorbidity of late life depression: an opportunity for research on mechanisms and treatment. Biol Psychiatry 52:543–558CrossRefGoogle Scholar
  5. 5.
    Vataja R, Pohjasvaara T, M¨antyl¨a R, Ylikoski R, Leskel¨a M, Kalska H et al (2005) Depression-executive dysfunction syndrome in stroke patients. Am J Geriatr Psychiatry 13:99–107PubMedGoogle Scholar
  6. 6.
    Lyketsos CG, Treisman GJ, Lipsey JR, Morris PL, Robinson RG (1998) Does stroke cause depression? J Neuropsychiatry Clin Neurosci 10:103–107CrossRefGoogle Scholar
  7. 7.
    Wager-Smith K, Markou A (2011) Depression: a repair response to stress- induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci Biobehav Rev 35:742–764CrossRefGoogle Scholar
  8. 8.
    Huang CQ, Dong BR, Lu ZC, Yue JR, Liu QX (2010) Chronic diseases and risk for depression in old age: a meta-analysis of published literature. Ageing Res Rev 9:131–141CrossRefGoogle Scholar
  9. 9.
    Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48:861–873CrossRefGoogle Scholar
  10. 10.
    Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Rajkowska G, Stockmeier CA (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127:230–240CrossRefGoogle Scholar
  11. 11.
    Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol Psychiatry 5:142–149CrossRefGoogle Scholar
  12. 12.
    Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G (2004) Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29:2088–2096CrossRefGoogle Scholar
  13. 13.
    Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G (2015) Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry 20:320–328CrossRefGoogle Scholar
  14. 14.
    Torres-Platas SG, Nagy C, Wakid M, Turecki G, Mechawar N (2016) Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol Psychiatry 21:509–515CrossRefGoogle Scholar
  15. 15.
    Rajkowska G, Miguel-Hidalgo JJ, Wei J, Pittman SD, Dilley G, Overholser J, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098CrossRefGoogle Scholar
  16. 16.
    Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan RR (2005) Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry 58:297–306CrossRefGoogle Scholar
  17. 17.
    Miguel-Hidalgo JJ, Wilson BA, Hussain S, Meshram A, Rajkowska G, Stockmeier CA (2014) Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J Psychiatr Res 55:101–109CrossRefGoogle Scholar
  18. 18.
    Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS (2002) Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51:273–279CrossRefGoogle Scholar
  19. 19.
    Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68:675–690CrossRefGoogle Scholar
  20. 20.
    Nagafusa Y, Okamoto N, Sakamoto K, Yamashita F, Kawaguchi A, Higuchi T, Matsuda H (2012) Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder. J Affect Disord 140:296–299CrossRefGoogle Scholar
  21. 21.
    Townsend JD, Eberhart NK, Bookheimer SY, Eisenberger NI, Foland-Ross LC, Cook IA, Sugar CA, Altshuler LL (2010) fMRI activation in the amygdala and the orbitofrontal cortex in unmedicated subjects with major depressive disorder. Psychiatry Res 183:209–217CrossRefGoogle Scholar
  22. 22.
    Kerestes R, Bhagwagar Z, Nathan PJ, Meda SA, Ladouceur CD, Maloney K, Matuskey D, Ruf B, Saricicek A, Wang F, Pearlson GD, Phillips ML, Blumberg HP (2012) Prefrontal cortical response to emotional faces in individuals with major depressive disorder in remission. Psychiatry Res 202:30–37CrossRefGoogle Scholar
  23. 23.
    Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827CrossRefGoogle Scholar
  24. 24.
    del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81CrossRefGoogle Scholar
  25. 25.
    Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262CrossRefGoogle Scholar
  26. 26.
    Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267CrossRefGoogle Scholar
  27. 27.
    Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, Rupprecht R (2016) Fluoxetine requires the Endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front Cell Neurosci 10:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Grazyna Rajkowska
    • 1
    Email author
  • Jose Javier Miguel-Hidalgo
    • 1
  1. 1.Department of Psychiatry and Human BehaviorUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations