Advertisement

The Astrocyte–Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse

  • Uzma Hasan
  • Sandeep K. Singh
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1938)

Abstract

Astrocytes are known to provide trophic support to neurons and were originally thought to be passive space-filling cells in the brain. However, recent advances in astrocyte development and functions have highlighted their active roles in controlling brain functions by modulating synaptic transmission. A bidirectional cross talk between astrocytic processes and neuronal synapses define the concept of tripartite synapse. Any change in astrocytic structure/function influences neuronal activity which could lead to neurodevelopmental and neurodegenerative disorders. In this chapter, we briefly overview the methodologies used in deciphering the mechanisms of dynamic interplay between astrocytes and neurons.

Key words

Astrocyte Tripartite synapse RGC Neural circuit hiPSC Brain organoids 

References

  1. 1.
    Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–810PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Pérez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14:1220–1224PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuron 96:697–708PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Halassa MM, Fellin T, Takano H, Dong J-H, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Shigetomi E, Bushong EA, Haustein MD, Tong X, Jackson-Weaver O, Kracun S, Xu J, Sofroniew MV, Ellisman MH, Khakh BS (2013) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141:633–647PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lavialle M, Aumann G, Anlauf E, Prols F, Arpin M, Derouiche A (2011) Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci 108:12915–12919PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kettenmann H, Verkhratsky A (2011) Neuroglia—living nerve glue. Fortschr Neurol Psychiatr 79:588–597PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mothet J-P, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci 102:5606–5611PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:13CrossRefGoogle Scholar
  15. 15.
    Faludi G, Mirnics K (2011) Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 29:305–309PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, Geschwind DH (2013) Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155:1008–1021PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bae JR, Kim SH (2017) Synapses in neurodegenerative diseases. BMB Rep 50:237–246PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15(4):805–819PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ippolito DM, Eroglu C (2010) Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp (45):2270Google Scholar
  21. 21.
    Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, Calhan OY, Silver DL, Stevens B, Calakos N, Soderling SH, Eroglu C (2014) Astrocytes refine cortical connectivity at dendritic spines. eLife. 3:e04047Google Scholar
  22. 22.
    Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC, Rodrigues WS, Pamukcu A, Enustun E, Ertuz Z, Scheiffele P, Soderling SH, Silver DL, Ji RR, Medina AE, Eroglu C (2016) Astrocytes assemble Thalamocortical synapses by bridging NRX1α and NL1 via Hevin. Cell 164:183–196PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Elmariah SB (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 25:3638–3650PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dobie FA, Craig AM (2011) Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J Neurosci 31:10481–10493PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jarvie BC, Hentges ST (2012) Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J Comp Neurol 520:3863–3876PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Brown LE, Fuchs C, Nicholson MW, Stephenson FA, Thomson AM, Jovanovic JN (2014) Inhibitory synapse formation in a co-culture model incorporating GABAergic medium spiny neurons and HEK293 cells stably expressing GABAA receptors. J Vis Exp:e52115Google Scholar
  29. 29.
    Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Allen NJ (2014) Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 30:439–463PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT, Enustun E, Ejikeme T, Ji RR, Eroglu C (2017) Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551:192–197PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chung W-S, Verghese PB, Chakraborty C, Joung J, Hyman BT, Ulrich JD, Holtzman DM, Barres BA (2016) Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci 113:10186–10191PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Martone ME, Holash JA, Bayardo A, Pasquale EB, Ellisman MH (1997) Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 771:238–250PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Nestor MW, Mok L-P, Tulapurkar ME, Thompson SM (2007) Plasticity of neuron-glial interactions mediated by Astrocytic EphARs. J Neurosci 27:12817–12828PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Davila D, Thibault K, Fiacco TA, Agulhon C (2013) Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 7:272PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dzyubenko E, Gottschling C, Faissner A (2016) Neuron-glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast 2016:14CrossRefGoogle Scholar
  39. 39.
    McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 93:6361–6366PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Panatier A, Arizono M, Nagerl UV (2014) Dissecting tripartite synapses with STED microscopy. Philos Trans R Soc B Biol Sci 369:20130597CrossRefGoogle Scholar
  44. 44.
    Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:e96PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Reeves AMB, Shigetomi E, Khakh BS (2011) Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J Neurosci 31:9353–9358PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Garaschuk O (2013) Imaging microcircuit function in healthy and diseased brain. Exp Neurol 242:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13:687–700PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jiang R, Diaz-Castro B, Looger LL, Khakh BS (2016) Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J Neurosci 36:3453–3470PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Pérez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochim Biophys Acta, Mol Cell Res 1833:1787–1797.1PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Shigetomi E, Patel S, Khakh BS (2016) Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26:300–312PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen T-W, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS, Vondriska TM, Whitelegge JP, Coppola G, Khakh BS (2017) Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95:531–549PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    B. F. Fosque, Y. Sun, H. Dana, C.-T. Yang, T. Ohyama, M. R. Tadross, R. Patel, M. Zlatic, D. S. Kim, M. B. Ahrens, V. Jayaraman, L. L. Looger, E. R. Schreiter (2015) Labeling of active neural circuits in vivo with designed calcium integrators. Science 347(6223):755–760PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing Channelrhodopsin-2. Neuron 54:205–218PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Schoenenberger P, Schärer YPZ, Oertner TG (2010) Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 96:34–39PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63CrossRefGoogle Scholar
  61. 61.
    Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JFH, Røe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V (2012) Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22:1690–1697PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schiavo GG, Benfenati F, Poulain B, Rossetto O, de Laureto PP, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ormel L, Stensrud MJ, Bergersen LH, Gundersen V (2012) VGLUT1 is localized in astrocytic processes in several brain regions. Glia 60:229–238PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhang Q, Pangršič T, Kreft M, Kržan M, Li N, Sul JY, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Marchaland J, Cali C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca2+ transients control Exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Montana V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23CrossRefGoogle Scholar
  72. 72.
    Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4:2057–2064CrossRefGoogle Scholar
  73. 73.
    Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30:1143–1148PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY (2014) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gratten J, Wray NR, Keller MC, Visscher PM (2014) Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci 17:782–790PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Parikshak NN, Gandal MJ, Geschwind DH (2015) Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet 16:441–458PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115:1449–1457PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim NS, Yoon KJ, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang CH, Yoritomo N, Kaibuchi K, Zou J, Christian KM, Cheng L, Ross CA, Margolis RL, Chen G, Kosik KS, Song H, Ming GL (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515:414–418PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chen H, Qian K, Du Z, Cao J, Petersen A, Liu H, Blackbourn LW, Huang CL, Errigo A, Yin Y, Lu J, Ayala M, Zhang SC (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14:796–809PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell 143:527–539PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    TCW J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, Machlovi SI, Abdelaal R, Karch CM, Phatnani H, Slesinger PA, Zhang B, Goate AM, Brennand KJ (2017) An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Reports 9:600–614PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Russo FB, Freitas BC, Pignatari GC, Fernandes IR, Sebat J, Muotri AR, Beltrão-Braga PCB (2017) Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 83(7):569–578PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, Shakirzyanova A, Leskelä S, Sarajärvi T, Viitanen M, Rinne JO, Hiltunen M, Haapasalo A, Giniatullin R, Tavi P, Zhang SC, Kanninen KM, Hämäläinen RH, Koistinaho J (2017) PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports 9:1885–1897PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jones VC, Atkinson-Dell R, Verkhratsky A, Mohamet L (2017) Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 8(3):e2696PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lee CT, Bendriem RM, Wu WW, Shen RF (2017) 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 24:59PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci 112(51):15672–15677PubMedPubMedCentralGoogle Scholar
  91. 91.
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park J-Y, O’Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515:274–278PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology HyderabadSangareddyIndia

Personalised recommendations