Advertisement

Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain

  • Patrick Aldrin-Kirk
  • Tomas BjörklundEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1937)

Abstract

Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.

Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.

Key words

Chemogenetics Ligand-gated ion channel G-Protein-coupled receptor DREADD TRPV1 GluCl PSAM/PSEM Allatostatin Ligand Engineered receptors Neuronal modulation Gene therapy 

Notes

Acknowledgments

This work was supported by grants from the Swedish Research Council (K2014-79X-22510-01-1 and ÄR-MH-2016-01997); Michael J Fox foundation, Swedish Parkinson Foundation; Crafoord foundation and the Bagadilico Linnaeus consortium. TB is supported by Ass. Senior lectureship from the Bente Rexed foundation.

References

  1. 1.
    Forkmann G, Dangelmayr B (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet 18(5–6):519–527PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Strobel SA (1998) Ribozyme chemogenetics. Biopolymers 48(1):65–81PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bishop AC et al (1998) Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 8(5):257–266PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bishop AC et al (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Liu Y et al (1998) Engineering Src family protein kinases with unnatural nucleotide specificity. Chem Biol 5(2):91–101PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cohen MS et al (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308(5726):1318–1321PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen X et al (2005) A chemical-genetic approach to studying neurotrophin signaling. Neuron 46(1):13–21PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dar AC et al (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486(7401):80–84PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Haring D, Distefano MD (2001) Enzymes by design: chemogenetic assembly of transamination active sites containing lysine residues for covalent catalysis. Bioconjug Chem 12(3):385–390PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Collot J et al (2003) Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J Am Chem Soc 125(30):9030–9031PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Klein G et al (2005) Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin-avidin technology. Angew Chem Int Ed Engl 44(47):7764–7767PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zemelman BV et al (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100(3):1352–1357PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lerchner W et al (2007) Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 54(1):35–49PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Arenkiel BR et al (2008) Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat Methods 5(4):299–302PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Magnus CJ et al (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Redfern CH et al (1999) Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 17(2):165–169PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Armbruster BN et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Alexander GM et al (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nadeau H et al (2000) ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophysiol 84(2):1062–1075PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Stanley BG et al (1993) Lateral hypothalamic injections of glutamate, kainic acid, D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res 613(1):88–95PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Slimko EM et al (2002) Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J Neurosci 22(17):7373–7379PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Degani-Katzav N et al (2016) Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel. Proc Natl Acad Sci U S A 113(5):E644–E653PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li P, Slimko EM, Lester HA (2002) Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett 528(1–3):77–82PubMedPubMedCentralGoogle Scholar
  25. 25.
    Slimko EM, Lester HA (2003) Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J Neurosci Methods 124(1):75–81PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    McKellar QA et al (1992) Clinical and pharmacological properties of ivermectin in rabbits and guinea pigs. Vet Rec 130(4):71–73PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Frazier SJ, Cohen BN, Lester HA (2013) An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin. J Biol Chem 288(29):21029–21042PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lynagh T, Lynch JW (2010) An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J Biol Chem 285(20):14890–14897PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Oishi Y et al (2013) Role of the medial prefrontal cortex in cataplexy. J Neurosci 33(23):9743–9751PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Haubensak W et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lin D et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470(7333):221–226PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schinkel AH et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502PubMedCrossRefGoogle Scholar
  33. 33.
    Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824CrossRefGoogle Scholar
  34. 34.
    Tominaga M et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543PubMedCrossRefGoogle Scholar
  35. 35.
    Tobin DM et al (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318PubMedCrossRefGoogle Scholar
  36. 36.
    Guler AD et al (2012) Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat Commun 3:746PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Crawford DC et al (2009) Comparative effects of heterologous TRPV1 and TRPM8 expression in rat hippocampal neurons. PLoS One 4(12):e8166PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ahluwalia J et al (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17(12):2611–2618PubMedCrossRefGoogle Scholar
  39. 39.
    Campo-Soria C, Chang Y, Weiss DS (2006) Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 148(7):984–990PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sancar F et al (2007) Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol 71(1):38–46PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Buhr A, Baur R, Sigel E (1997) Subtle changes in residue 77 of the gamma subunit of alpha1beta2gamma2 GABAA receptors drastically alter the affinity for ligands of the benzodiazepine binding site. J Biol Chem 272(18):11799–11804PubMedCrossRefGoogle Scholar
  42. 42.
    Ogris W et al (2004) Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABA(A) receptor gamma2 subunit. Biochem Pharmacol 68(8):1621–1629PubMedCrossRefGoogle Scholar
  43. 43.
    Cope DW et al (2004) Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor gamma2 subunit. Neuropharmacology 47(1):17–34PubMedCrossRefGoogle Scholar
  44. 44.
    Wulff P et al (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10(7):923–929PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sumegi M et al (2012) Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells. J Physiol 590(7):1517–1534PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Leppa E et al (2005) Agonistic effects of the beta-carboline DMCM revealed in GABA(A) receptor gamma 2 subunit F77I point-mutated mice. Neuropharmacology 48(4):469–478PubMedCrossRefGoogle Scholar
  47. 47.
    Eisele JL et al (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366(6454):479–483PubMedCrossRefGoogle Scholar
  48. 48.
    Grutter T et al (2005) Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 102(50):18207–18212PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lovett-Barron M et al (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(3):423–430, S1-3PubMedCrossRefGoogle Scholar
  50. 50.
    Lovett-Barron M et al (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343(6173):857–863PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508(7496):351–356PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504(7479):272–276PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Allen JA, Roth BL (2011) Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 51:117–144PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Masseck OA et al (2011) Light- and drug-activated G-protein-coupled receptors to control intracellular signalling. Exp Physiol 96(1):51–56PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gainetdinov RR et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Strader CD et al (1991) Allele-specific activation of genetically engineered receptors. J Biol Chem 266(1):5–8PubMedPubMedCentralGoogle Scholar
  57. 57.
    Coward P et al (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 95(1):352–357PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Conklin BR et al (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5(8):673–678PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hsiao EC et al (2008) Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc Natl Acad Sci U S A 105(4):1209–1214PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sweger EJ et al (2007) Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 27(9):2309–2317PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tan EM et al (2006) Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51(2):157–170PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lechner HA, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of Mammalian neurons. J Neurosci 22(13):5287–5290PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Marina N et al (2010) Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J Neurosci 30(37):12466–12473PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhou Y et al (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12(11):1438–1443PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wehr M et al (2009) Transgenic silencing of neurons in the mammalian brain by expression of the allatostatin receptor (AlstR). J Neurophysiol 102(4):2554–2562PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gosgnach S et al (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440(7081):215–219PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhang Y et al (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60(1):84–96PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nielsen KJ, Callaway EM, Krauzlis RJ (2012) Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey. Front Syst Neurosci 6:48PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ferguson SM et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Schmidt C et al (2003) Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that "silence" a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J Biol Chem 278(32):30248–30260PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5(3):561–573PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63(2):291–315PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Li JH et al (2013) A novel experimental strategy to assess the metabolic effects of selective activation of a G(q)-coupled receptor in hepatocytes in vivo. Endocrinology 154(10):3539–3551PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jain S et al (2013) Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J Clin Invest 123(4):1750–1762PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Alvarez-Curto E et al (2010) Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem 285(30):23318–23330PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Alvarez-Curto E et al (2011) Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol Pharmacol 80(6):1033–1046PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Garner AR et al (2012) Generation of a synthetic memory trace. Science 335(6075):1513–1516PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Krashes MJ et al (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sasaki K et al (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 6(5):e20360PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Boender AJ et al (2014) Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9(4):e95392PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dell'Anno MT et al (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124(7):3215–3229PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Aldrin-Kirk P et al (2016) DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron 90(5):955–968PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A 111(10):3859–3864PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mizoguchi H et al (2015) Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proc Natl Acad Sci U S A 112(29):E3930–E3939PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pienaar IS et al (2015) Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease. Mol Neurodegener 10:47PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Aldrin-Kirk P et al (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 109(Pt A):148–162PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sengupta A et al (2016) Disrupted prediction error links excessive amygdala activation to excessive fear. J Neurosci 36(2):385–395PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Guettier JM et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106(45):19197–19202PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Farrell MS et al (2013) A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38(5):854–862PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Alcacer C et al (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. J Clin Invest 127(2):720–734PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brancaccio M et al (2013) A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78(4):714–728PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pleil KE et al (2015) NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking. Nat Neurosci 18(4):545–552PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ray RS et al (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333(6042):637–642PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus-->midbrain pathway for feeding behavior. Neuron 82(4):797–808PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jurik A et al (2015) Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 156(12):2479–2491PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rei D et al (2015) Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc Natl Acad Sci U S A 112(23):7291–7296PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ognjanovski N et al (2017) Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat Commun 8:15039PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Weber F et al (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526(7573):435–438PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Michaelides M et al (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123(12):5342–5350PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82(4):575–582PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sharma D, Parameswaran N (2015) Multifaceted role of beta-arrestins in inflammation and disease. Genes Immun 16(8):499–513PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Beaulieu JM et al (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132(1):125–136PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bohn LM et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Allen JA et al (2011) Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A 108(45):18488–18493PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gomez JL et al (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357(6350):503–507PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chang WH et al (1998) Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 22(5):723–739CrossRefGoogle Scholar
  107. 107.
    Raper J et al (2017) Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem Neurosci 8(7):1570–1576PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328(2):243–250PubMedPubMedCentralGoogle Scholar
  109. 109.
    Alves-Rodrigues A et al (1996) Binding of clozapine metabolites and analogues to the histamine H3 receptor in rat brain cortex. Arch Pharm 329(8–9):413–416CrossRefGoogle Scholar
  110. 110.
    Salmi P, Ahlenius S (1996) Further evidence for clozapine as a dopamine D1 receptor agonist. Eur J Pharmacol 307(1):27–31PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wong G et al (1996) Effects of clozapine metabolites and chronic clozapine treatment on rat brain GABAA receptors. Eur J Pharmacol 314(3):319–323PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    MacLaren DA et al (2016) Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3:5CrossRefGoogle Scholar
  113. 113.
    Chen X et al (2015) The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Neurosci 6(3):476–484PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Saloman JL et al (2016) Gi-DREADD expression in peripheral nerves produces ligand-dependent analgesia, as well as ligand-independent functional changes in sensory neurons. J Neurosci 36(42):10769–10781PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Padilla SL et al (2017) AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci U S A 114(9):2413–2418PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Keenan WT et al (2017) Eye-drops for activation of DREADDs. Front Neural Circuits 11:93PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Vardy E et al (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86(4):936–946PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wu H et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kane BE et al (2006) A unique binding epitope for salvinorin A, a non-nitrogenous kappa opioid receptor agonist. FEBS J 273(9):1966–1974PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Chavkin C et al (2004) Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations. J Pharmacol Exp Ther 308(3):1197–1203PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Denis RG et al (2015) Palatability can drive feeding independent of AgRP neurons. Cell Metab 22(4):646–657PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Marchant NJ et al (2016) Role of ventral subiculum in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci 36(11):3281–3294PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Rapanelli M et al (2017) Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc Natl Acad Sci U S A 114(25):6599–6604PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang Y et al (2008) 2-Methoxymethyl-salvinorin B is a potent kappa opioid receptor agonist with longer lasting action in vivo than salvinorin A. J Pharmacol Exp Ther 324(3):1073–1083PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Zhu H et al (2014) Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39(8):1880–1892PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Carter ME et al (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474):111–114PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tervo DG et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Eldridge MA et al (2016) Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19(1):37–39PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Nagai Y et al (2016) PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat Commun 7:13605PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Aldrin-Kirk P et al (2014) Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS One 9(7):e100869PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Grimm D et al (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Deverman BE et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Neuromodulation, Wallenberg Neuroscience CenterLund UniversityLundSweden

Personalised recommendations