Stable Genetic Modification of Mesenchymal Stromal Cells Using Lentiviral Vectors

  • Francisco MartínEmail author
  • María Tristán-Manzano
  • Noelia Maldonado-Pérez
  • Sabina Sánchez-Hernández
  • Karim Benabdellah
  • Marién Cobo
Part of the Methods in Molecular Biology book series (MIMB, volume 1937)


Mesenchymal stromal cell (MSC) therapy has produced very promising results for multiple diseases in animal models, with over 780 clinical trials on going or completed. However, most of the human clinical trials have not been as successful as trials using preclinical models. To improve the therapeutic potential of MSCs, different research groups have used gene transfer vectors to express factors involved in migration, survival, differentiation, and immunomodulation. The ideal gene transfer vector for most applications should achieve long-term, stable (constitutive or inducible) transgene expression in MSCs and their progeny. Given their efficiency and low impact on transduced cells, lentiviral vectors (LVs) are the vectors of choice. In this chapter we will describe a detailed protocol for the generation of genetically modified MSCs using lentiviral vectors (LVs). Although this protocol has been optimized for MSC lentiviral transduction, it can be easily adapted to other stem cells by changing culture conditions while maintaining volumes and incubation times.

Key words

Mesenchymal stromal cells MSCs ASCs Lentiviral vectors Constitutive expression Inducible expression Transduction Genetic modification 


  1. 1.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317CrossRefGoogle Scholar
  2. 2.
    Hwang BW, Kim SJ, Park KM et al (2015) Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release 220(Pt A):119–129CrossRefGoogle Scholar
  3. 3.
    Park SA, Ryu CH, Kim SM et al (2011) CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol 38(1):97–103PubMedGoogle Scholar
  4. 4.
    Tyciakova S, Matuskova M, Bohovic R et al (2015) Genetically engineered mesenchymal stromal cells producing TNFalpha have tumour suppressing effect on human melanoma xenograft. J Gene Med 17(1–2):54–67CrossRefGoogle Scholar
  5. 5.
    Sasportas LS, Kasmieh R, Wakimoto H et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827CrossRefGoogle Scholar
  6. 6.
    Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64(8):739–748CrossRefGoogle Scholar
  7. 7.
    Knoop K, Kolokythas M, Klutz K et al (2011) Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther 19(9):1704–1713CrossRefGoogle Scholar
  8. 8.
    Kucerova L, Altanerova V, Matuskova M et al (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–6313CrossRefGoogle Scholar
  9. 9.
    Ren C, Kumar S, Chanda D et al (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15(21):1446–1453CrossRefGoogle Scholar
  10. 10.
    Kim SM, Lim JY, Park SI et al (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–9623CrossRefGoogle Scholar
  11. 11.
    Kim SW, Kim SJ, Park SH et al (2013) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427CrossRefGoogle Scholar
  12. 12.
    McGinley L, McMahon J, Strappe P et al (2011) Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther 2(2):12CrossRefGoogle Scholar
  13. 13.
    Xiang Q, Hong D, Liao Y et al (2017) Overexpression of Gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival. J Cell Physiol 232(5):996–1007CrossRefGoogle Scholar
  14. 14.
    Nakashima M, Tachibana K, Iohara K et al (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597CrossRefGoogle Scholar
  15. 15.
    Sheyn D, Pelled G, Zilberman Y et al (2008) Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 26(4):1056–1064CrossRefGoogle Scholar
  16. 16.
    Kim HJ, Im GI (2011) Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells. Stem Cells Dev 20(12):2103–2114CrossRefGoogle Scholar
  17. 17.
    Kim TH, Kim M, Eltohamy M et al (2013) Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 101(6):1651–1660CrossRefGoogle Scholar
  18. 18.
    Frisch J, Venkatesan JK, Rey-Rico A et al (2014) Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-beta via recombinant adeno-associated viral vectors. Hum Gene Ther 25(12):1050–1060CrossRefGoogle Scholar
  19. 19.
    Joydeep D, Choi YJ, Yasuda H et al (2016) Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 6:33784CrossRefGoogle Scholar
  20. 20.
    Carrillo-Galvez AB, Galvez-Peisl S, Ayllón V et al (2018) Glycoprotein A repetitions predominant (GARP) protects MSCs from mtROS-mediated DNA damage and apoptosis via regulation of TGF-β Under reviewGoogle Scholar
  21. 21.
    Cobo M, Anderson P, Benabdellah K et al (2013) Mesenchymal stem cells expressing vasoactive intestinal peptide ameliorate symptoms in a model of chronic multiple sclerosis. Cell Transplant 22(5):839–854CrossRefGoogle Scholar
  22. 22.
    Carrillo-Galvez AB, Cobo M, Cuevas-Ocana S et al (2015) Mesenchymal stromal cells express GARP/LRRC32 on their surface: effects on their biology and immunomodulatory capacity. Stem Cells 33(1):183–195CrossRefGoogle Scholar
  23. 23.
    Aslan H, Sheyn D, Gazit D (2009) Genetically engineered mesenchymal stem cells: applications in spine therapy. Regen Med 4(1):99–108CrossRefGoogle Scholar
  24. 24.
    Dey ND, Bombard MC, Roland BP et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200CrossRefGoogle Scholar
  25. 25.
    Hu J, Lang Y, Zhang T et al (2016) Lentivirus-mediated PGC-1alpha overexpression protects against traumatic spinal cord injury in rats. Neuroscience 328:40–49CrossRefGoogle Scholar
  26. 26.
    Oggu GS, Sasikumar S, Reddy N et al (2017) Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity. Stem Cell Rev 13(6):725–740CrossRefGoogle Scholar
  27. 27.
    Guo H, Zhao N, Gao H et al (2017) Mesenchymal stem cells overexpressing interleukin-35 propagate immunosuppressive effects in mice. Scand J Immunol 86(5):389–395CrossRefGoogle Scholar
  28. 28.
    Marin-Banasco C, Benabdellah K, Melero-Jerez C et al (2017) Gene therapy with mesenchymal stem cells expressing IFN-ss ameliorates neuroinflammation in experimental models of multiple sclerosis. Br J Pharmacol 174(3):238–253CrossRefGoogle Scholar
  29. 29.
    Cai SX, Liu AR, He HL et al (2014) Stable genetic alterations of beta-catenin and ROR2 regulate the Wnt pathway, affect the fate of MSCs. J Cell Physiol 229(6):791–800CrossRefGoogle Scholar
  30. 30.
    Gheisari Y, Azadmanesh K, Ahmadbeigi N et al (2012) Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury. Stem Cells Dev 21(16):2969–2980CrossRefGoogle Scholar
  31. 31.
    Huang J, Zhang Z, Guo J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762CrossRefGoogle Scholar
  32. 32.
    Ni X, Ou C, Guo J et al (2017) Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro. Int J Mol Med 40(2):418–426CrossRefGoogle Scholar
  33. 33.
    Wang L, Zhao Y, Cao J et al (2015) Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits. Br J Oral Maxillofac Surg 53(3):279–284CrossRefGoogle Scholar
  34. 34.
    Ikeda Y, Sakaue M, Chijimatsu R et al (2017) IGF-1 gene transfer to human synovial MSCs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype. Stem Cells Int 2017:5804147CrossRefGoogle Scholar
  35. 35.
    Grinev VV, Severin IN, Posrednik DV et al (2012) Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow. Genetika 48(3):389–400PubMedGoogle Scholar
  36. 36.
    Choi KS, Ahn SY, Kim TS et al (2011) Characterization and biodistribution of human mesenchymal stem cells transduced with lentiviral-mediated BMP2. Arch Pharm Res 34(4):599–606CrossRefGoogle Scholar
  37. 37.
    Dodd M, Marquez-Curtis L, Janowska-Wieczorek A et al (2014) Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J Gene Med 16(5–6):131–142CrossRefGoogle Scholar
  38. 38.
    Liu J, Chen W, Zhao Z et al (2013) Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 34(32):7862–7872CrossRefGoogle Scholar
  39. 39.
    Zhang XY, La Russa VF, Reiser J (2004) Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78(3):1219–1229CrossRefGoogle Scholar
  40. 40.
    Qin JY, Zhang L, Clift KL et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611CrossRefGoogle Scholar
  41. 41.
    Yang WH, Yang C, Xue YQ et al (2013) Regulated expression of lentivirus-mediated GDNF in human bone marrow-derived mesenchymal stem cells and its neuroprotection on dopaminergic cells in vitro. PLoS One 8(5):e64389CrossRefGoogle Scholar
  42. 42.
    Hajizadeh-Saffar E, Tahamtani Y, Aghdami N et al (2015) Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 5:9322CrossRefGoogle Scholar
  43. 43.
    Chang HK, Kim PH, Cho HM et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24(9):1644–1654CrossRefGoogle Scholar
  44. 44.
    Benabdellah K, Cobo M, Munoz P et al (2011) Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines. PLoS One 6(8):e23734CrossRefGoogle Scholar
  45. 45.
    Benabdellah K, Munoz P, Cobo M et al (2016) Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 6:37289CrossRefGoogle Scholar
  46. 46.
    Moriyama H, Moriyama M, Sawaragi K et al (2013) Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system. PLoS One 8(6):e66274CrossRefGoogle Scholar
  47. 47.
    Toscano MG, Frecha C, Ortega C et al (2004) Efficient lentiviral transduction of Herpesvirus saimiri immortalized T cells as a model for gene therapy in primary immunodeficiencies. Gene Ther 11(12):956–961CrossRefGoogle Scholar
  48. 48.
    Benabdellah K, Gutierrez-Guerrero A, Cobo M et al (2014) A chimeric HS4-SAR insulator (IS2) that prevents silencing and enhances expression of lentiviral vectors in pluripotent stem cells. PLoS One 9(1):e84268CrossRefGoogle Scholar
  49. 49.
    Choi JR, Yong KW, Wan Safwani WKZ (2017) Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 74(14):2587–2600CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Francisco Martín
    • 1
    Email author
  • María Tristán-Manzano
    • 1
  • Noelia Maldonado-Pérez
    • 1
  • Sabina Sánchez-Hernández
    • 1
  • Karim Benabdellah
    • 1
  • Marién Cobo
    • 1
  1. 1.Centre for Genomics and Oncological Research (GENYO)Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranadaSpain

Personalised recommendations