Advertisement

Pseudotime Reconstruction Using TSCAN

  • Zhicheng Ji
  • Hongkai JiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1935)

Abstract

In many single-cell RNA-seq (scRNA-seq) experiments, cells represent progressively changing states along a continuous biological process. A useful approach to analyzing data from such experiments is to computationally order cells based on their gradual transition of gene expression. The ordered cells can be viewed as samples drawn from a pseudo-temporal trajectory. Analyzing gene expression dynamics along the pseudotime provides a valuable tool for reconstructing the underlying biological process and generating biological insights. TSCAN is an R package to support in silico reconstruction of cells’ pseudotime. This chapter introduces how to apply TSCAN to scRNA-seq data to perform pseudotime analysis.

Key words

Single-cell RNA-seq Gene expression Pseudotime Minimum spanning tree Genomics Bioinformatics 

References

  1. 1.
    Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386CrossRefGoogle Scholar
  2. 2.
    Zheng C, Zheng L, Yoo JK et al (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7):1342–1356CrossRefGoogle Scholar
  3. 3.
    Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369CrossRefGoogle Scholar
  4. 4.
    Marco E, Karp RL, Guo G et al (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A 111(52):E5643–E5650CrossRefGoogle Scholar
  5. 5.
    Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17(3):360–372CrossRefGoogle Scholar
  6. 6.
    Ji Z, Ji H (2016) TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44(13):e117–e117CrossRefGoogle Scholar
  7. 7.
    Haghverdi L, Buettner M, Wolf FA et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13(10):845–848CrossRefGoogle Scholar
  8. 8.
    Wouter S, Robrecht C, Helena T, et al (2018) A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. bioRxiv.  https://doi.org/10.1101/276907
  9. 9.
    Herring CA, Chen B, McKinley ET et al (2018) Single-cell computational strategies for lineage reconstruction in tissue systems. Cell Mol Gastroenterol Hepatol 5(4):539–548CrossRefGoogle Scholar
  10. 10.
    Street K, Risso D, Fletcher RB et al (2018) Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19(1):477CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    TSCAN R package on Github. https://github.com/zji90/TSCAN
  14. 14.
  15. 15.
    Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631CrossRefGoogle Scholar
  16. 16.
    Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Royal Stat Soc Sec B 73(1):3–36CrossRefGoogle Scholar
  17. 17.
    Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations