Metabolic Labeling and Structural Analysis of Glycosylphosphatidylinositols from Parasitic Protozoa

  • Nahid Azzouz
  • Peter Gerold
  • Ralph T. Schwarz
Part of the Methods in Molecular Biology book series (MIMB, volume 1934)


Glycosylphosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa and represent the major carbohydrate modification of many cell-surface parasite proteins. A minimal GPI-anchor precursor consists of core glycan (ethanolamine-PO4-Manα1-2Manα1-6Manα1-4GlcNH2) linked to the 6-position of the D-myo-inositol ring of phosphatidylinositol. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. The preassembled GPI-anchor precursor is post-translationally transferred to a variety of membrane proteins in the lumen of the endoplasmic reticulum in a transamidase-like reaction during which a C-terminal GPI attachment signal is released. Increasing evidence shows that a significant proportion of the synthesized GPIs are not used for protein anchoring, particularly in protozoa in which a large amount of free GPIs are being displayed at the cell surface. The characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. Especially this pathway, at least for Trypanosoma brucei, has been validated as a drug target. Furthermore, thanks to an increase of new innovative strategies to produce pure synthetic carbohydrates, a novel era in the use of GPIs in diagnostic, anti-GPI antibody production, as well as parasitic protozoa GPI-based vaccine approach is developing fast.

Key words

Glycosylphosphatidylinositol GPI GPI-labeling GPI structural elucidation Parasites 



This work was supported by the Deutsche Forschungsgemeinschaft, Hessisches Ministerium für Kultur und Wissenschaft, Stiftung P.E. Kempkes, and Fonds der Chemischen Industrie.


  1. 1.
    Ferguson MA, Low MG, Cross GA (1985) Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem 260:14547–14555PubMedGoogle Scholar
  2. 2.
    Ferguson MA, Homans SW, Dwek RA, Rademacher TW (1988) Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239:753–759CrossRefGoogle Scholar
  3. 3.
    Englund PT (1993) The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem 62:121–138CrossRefGoogle Scholar
  4. 4.
    McConville MJ, Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294:305–324CrossRefGoogle Scholar
  5. 5.
    Nosjean O, Briolay A, Roux B (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta 1331:153–186CrossRefGoogle Scholar
  6. 6.
    Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112:2799–2809PubMedGoogle Scholar
  7. 7.
    Tiede A, Bastisch I, Schubert J et al (1999) Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 380:503–523CrossRefGoogle Scholar
  8. 8.
    Ferguson MAJ, Hart GW, Kinoshita T (2017) Glycosylphosphatidylinositol Anchors. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (ed). Essentials of Glycobiology, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  9. 9.
    Hwa KY (2001) Glycosyl phosphatidylinositol-linked glycoconjugates: structure, biosynthesis and function. Adv Exp Med Biol 491:207–214CrossRefGoogle Scholar
  10. 10.
    Eisenhaber B, Maurer-Stroh S, Novatchkova M et al (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. BioEssays 2003(4):367–385CrossRefGoogle Scholar
  11. 11.
    Orleans P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast in mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011CrossRefGoogle Scholar
  12. 12.
    Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000CrossRefGoogle Scholar
  13. 13.
    Hong Y, Kinoshita T (2009) Trypanosome glycosylphosphatidylinositol biosynthesis. Korean J Parasitol 47:197–204CrossRefGoogle Scholar
  14. 14.
    Menon AK, Mayor S, Ferguson MA, Cross GAM (1988) Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins. J Biol Chem 263:1970–1977PubMedGoogle Scholar
  15. 15.
    Masterson WJ, Doering TL, Hart GW, Englund PT (1989) A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell 56:793–800CrossRefGoogle Scholar
  16. 16.
    Doering TL, Masterson WJ, Englund PT, Hart GW (1989) Biosynthesis of the glycosyl-phosphatidylinositol membrane anchor of the trypanosoma variant surface glycoprotein. Origin of the non-acetylated glucosamine. J Biol Chem 264:11168–11173PubMedGoogle Scholar
  17. 17.
    Masterson WJ, Raper J, Doering TL et al (1990) Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell 62:73–80CrossRefGoogle Scholar
  18. 18.
    Menon AK, Schwarz RT, Mayor S, Cross GAM (1990) Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. Structural characterization of putative biosynthetic intermediates. J Biol Chem 265:9033–9042PubMedGoogle Scholar
  19. 19.
    Menon AK, Mayor S, Schwarz RT (1990) Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: Involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J 9:4249–4258CrossRefGoogle Scholar
  20. 20.
    Menon AK, Eppinger M, Mayor S, Schwarz RT (1993) Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J 12:1907–1914CrossRefGoogle Scholar
  21. 21.
    Fujita M (2013) Biosynthesis and remodeling of GPI-anchored proteins. Seikagaku 85:985–995PubMedGoogle Scholar
  22. 22.
    Udenfriend S, Kodukula K (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 64:563–591CrossRefGoogle Scholar
  23. 23.
    Takeda J, Kinoshita T (1995) GPI-anchor biosynthesis. Trends Biochem Sci 20:367–371CrossRefGoogle Scholar
  24. 24.
    Robinson PJ (1991) Signal transduction by GPI-anchored membrane proteins. Cell Biol Intern Rep 15:761–767CrossRefGoogle Scholar
  25. 25.
    Magez S, Stijlemans B, Radwanska M et al (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160:1949–1956PubMedGoogle Scholar
  26. 26.
    Tachado SD, Mazhari-Tabrizi R, Schofield L (1999) Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol 12:609–617CrossRefGoogle Scholar
  27. 27.
    Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 4:409–417CrossRefGoogle Scholar
  28. 28.
    Debierre-Grockiego F, Schwarz RT (2010) Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 20:801–811CrossRefGoogle Scholar
  29. 29.
    Kinoshita T (2014) Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proc Jpn Acad Ser B Phys Biol Sci 90:130–143CrossRefGoogle Scholar
  30. 30.
    Tachado SD, Schofield L (1994) Glycosylphosphatidylinositol toxin of Trypanosoma brucei regulates IL-1 alpha and TNF-alpha expression in macrophages by protein tyrosine kinase mediated signal transduction. Biochem Biophys Res Commun 205:984–99125CrossRefGoogle Scholar
  31. 31.
    Schofield L, Tachado SD (1996) Regulation of host cell function by glycosylphosphatidylinositols of parasitic protozoa. Immunol Cell Biol 74:555CrossRefGoogle Scholar
  32. 32.
    Tachado SD, Gerold P, Schwarz RT et al (1997) Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci U S A 94:4022–4027CrossRefGoogle Scholar
  33. 33.
    Debierre-Grockiego F, Molitor N, Schwarz RT, Lüder CG (2009) Toxoplasma gondii glycosylphosphatidylinositols up-regulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages. Innate Immun 15:25–32CrossRefGoogle Scholar
  34. 34.
    Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 177:145–153CrossRefGoogle Scholar
  35. 35.
    Schofield L, Novakovic S, Gerold P et al (1996) Glycosylphosphatidylinositol toxin of Plasmodium falciparum up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte kinase-dependent signal transduction. J Immunol 156:1886–1896PubMedGoogle Scholar
  36. 36.
    Tachado SD, Gerold P, McConville MJ et al (1996) Glycosylphosphatidylinositol toxin of Plasmodium falciparum induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol 156:1897–1907PubMedGoogle Scholar
  37. 37.
    Lim J, Gowda DC, Krishnegowda G, Luckhart S (2005) Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect Immun 73:2778–2789CrossRefGoogle Scholar
  38. 38.
    Zhu J, Krishnegowda G, Li G, Gowda DC (2011) Proinflammatory responses by glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are mainly mediated through the recognition of TLR2/TLR1. Exp Parasitol 128:205–211CrossRefGoogle Scholar
  39. 39.
    Kinoshita T, Inoue N (2000) Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr Opin Chem Biol 6:632–638CrossRefGoogle Scholar
  40. 40.
    Delorenzi M, Sexton A, Shams-Eldin H et al (2002) Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum. Infect Immun 8:4510–4522CrossRefGoogle Scholar
  41. 41.
    Cardoso MS, Junqueira C, Trigueiro RC et al (2013) Identification and functional analysis of Trypanosoma cruzi genes that encode proteins of the glycosylphosphatidylinositol biosynthetic pathway. PLoS Negl Trop Dis 7:e2369CrossRefGoogle Scholar
  42. 42.
    Azzouz N, Shams-Eldin H, Schwarz RT (2005) Removal of phospholipid contaminants through precipitation of glycosylphosphatidylinositols. Anal Biochem 343:152–158CrossRefGoogle Scholar
  43. 43.
    Xu G, Lam KS (2003) Protein and chemical microarrays powerful tools for proteomics. J Biomed Biotechnol 2003:257–266CrossRefGoogle Scholar
  44. 44.
    Azzouz N, Kamena F, Seeberger PH (2010) Synthetic glycosylphosphatidylinositol as tools for glycoparasitology research. OMICS 14:445–454CrossRefGoogle Scholar
  45. 45.
    Mayor S, Menon AK, Cross GAM (1990) Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids. J Biol Chem 265:6174–6181PubMedGoogle Scholar
  46. 46.
    Treumann A, Güther MLS, Schneider P, Ferguson MAJ (1996) Analysis of carbohydrate and lipid components of glycosylphosphatidylinositol structures. In: Hounsell EF (ed) Glycoanalysis protocols, Methods in molecular biology, vol 76. Humana Press, Totowa, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nahid Azzouz
    • 1
  • Peter Gerold
    • 2
  • Ralph T. Schwarz
    • 3
  1. 1.Department of Biomolecular SystemsFreie Universität Berlin, Max-Planck-Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Recordati Pharma GmbHUlmGermany
  3. 3.Med. Zentrum für Hygiene und Med. Mikrobiologie, Philipps-Universität Marburg, Germany and Université des Sciences et Technologies de LilleVilleneuve D’Ascq CedexFrance

Personalised recommendations