Advertisement

Legionella pp 123-144 | Cite as

Screening Targeted Legionella pneumophila Mutant Libraries In Vivo Using INSeq

  • Stephanie R. ShamesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1921)

Abstract

Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe inflammatory pneumonia in humans called Legionnaires’ disease, which results from bacterial replication within alveolar macrophages. L. pneumophila replication within macrophages is dependent on hundreds of individual protein virulence factors. Understanding how these virulence factors contribute to disease in an animal model is important to reveal aspects of host-pathogen interactions. High-throughput sequencing (HTS)-based screens using transposon (Tn) mutagenesis are powerful approaches to identify bacterial genes important for host-pathogen interactions. Since large libraries of Tn mutants are at risk of bottleneck effects, phenotypic screening of smaller numbers of targeted mutants is an effective alternative. Insertion sequencing (INSeq) is a method that enables production of targeted Tn mutant libraries and has been used successfully to identify L. pneumophila virulence phenotypes. In this chapter, a protocol is described for using INSeq to generate an arrayed L. pneumophila Tn mutant library and for subsequent screening of targeted mutant pools in a mouse model of infection.

Key words

Legionella pneumophila Insertion sequencing Transposon mutagenesis Mouse model 

Notes

Acknowledgments

We thank Drs. Craig Roy, Andrew Goodman, Thomas Cullen, and Whitman Schofield for the assistance in protocol development. Research in the Shames Lab is supported by a Developmental Research Project Award from NIH NIGMS Kansas-INBRE (P20 GM103418) and start-up funds from Kansas State University.

References

  1. 1.
    van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442CrossRefGoogle Scholar
  2. 2.
    Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR (2017) Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A 63:201708553Google Scholar
  3. 3.
    Goodman AL, Mcnulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host and Microbe 6:279–289CrossRefGoogle Scholar
  4. 4.
    Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB (2013) A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 9:e1003582CrossRefGoogle Scholar
  5. 5.
    Wang N, Ozer EA, Mandel MJ, Hauser AR (2014) Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 5:e01163–e01114PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE (2014) Novel components of the flagellar system in epsilonproteobacteria. MBio 5:e01349–e01314PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wong SM, Bernui M, Shen H, Akerley BJ (2013) Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci U S A 110:15413–15418CrossRefGoogle Scholar
  8. 8.
    Abel S, Abel zur Wiesch P, Davis BM, Waldor MK (2015) Analysis of bottlenecks in experimental models of infection. PLoS Pathog 11:e1004823CrossRefGoogle Scholar
  9. 9.
    Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel zur Wiesch P, Zhou X, Davis BM, Waldor MK (2016) Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc Natl Acad Sci U S A 113:6283–6288CrossRefGoogle Scholar
  10. 10.
    Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6:1969–1980CrossRefGoogle Scholar
  11. 11.
    Newton HJ, Ang DKY, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298CrossRefGoogle Scholar
  12. 12.
    Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331CrossRefGoogle Scholar
  13. 13.
    Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876CrossRefGoogle Scholar
  14. 14.
    Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci 95:1669–1674CrossRefGoogle Scholar
  15. 15.
    Doleans A, Aurell H, Reyrolle M, Lina G, Freney J, Vandenesch F, Etienne J, Jarraud S (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42:458–460CrossRefGoogle Scholar
  16. 16.
    Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508CrossRefGoogle Scholar
  17. 17.
    Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441PubMedPubMedCentralGoogle Scholar
  18. 18.
    Catrenich CE, Johnson W (1989) Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium. Infect Immun 57:1862–1864PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sadosky AB, Wiater LA, Shuman HA (1993) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61:5361–5373PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18CrossRefGoogle Scholar
  21. 21.
    Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104CrossRefGoogle Scholar
  22. 22.
    Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325CrossRefGoogle Scholar
  23. 23.
    Hori JI, Zamboni DS (2013) The mouse as a model for pulmonary legionella infection. Methods Mol Biol 954:493–503CrossRefGoogle Scholar
  24. 24.
    Morgan RD, Bhatia TK, Lovasco L, Davis TB (2008) MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 36:6558–6570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations