Advertisement

Legionella pp 55-78 | Cite as

Selection of Legionella Virulence-Related Traits by Environmental Protozoa

  • Francisco Amaro
  • Howard ShumanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1921)

Abstract

Predation by protozoa provides a strong selective pressure for Legionella to develop and maintain mechanisms conferring resistance to digestion and ability to replicate within both amoebae and mammalian macrophages. Here we describe how to isolate environmental protozoa that prey on virulent Legionella. These protists are extremely useful models to study the cellular mechanisms employed by Legionellae to survive and grow in its natural environment. We present here procedures that are available to study the interactions between environmental protozoa and Legionella and thus increase our current understanding of Legionella virulence and the infection process.

Key words

Legionella Amoebae Ciliates Grazing Virulence-related traits Selective pressure 

References

  1. 1.
    Matz C, Kjelleberg S (2005) Off the hook-how bacteria survive protozoan grazing. Trends Microbiol 13(7):302–307.  https://doi.org/10.1016/j.tim.2005.05.009CrossRefPubMedGoogle Scholar
  2. 2.
    Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17(2):413–433CrossRefGoogle Scholar
  3. 3.
    Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33(12):1179–1183CrossRefGoogle Scholar
  4. 4.
    Fields BS (1996) The molecular ecology of legionellae. Trends Microbiol 4(7):286–290CrossRefGoogle Scholar
  5. 5.
    Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107(2):368–378.  https://doi.org/10.1111/j.1365-2672.2009.04208.xCrossRefPubMedGoogle Scholar
  6. 6.
    Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71(1):20–28.  https://doi.org/10.1128/AEM.71.1.20-28.2005CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brown MR, Barker J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7(1):46–50CrossRefGoogle Scholar
  8. 8.
    Mercante JW, Winchell JM (2015) Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 28(1):95–133.  https://doi.org/10.1128/CMR.00029-14CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Al-Quadan T, Price CT, Abu Kwaik Y (2012) Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 20(6):299–306.  https://doi.org/10.1016/j.tim.2012.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F (2010) From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One 5(8):e11882.  https://doi.org/10.1371/journal.pone.0011882CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Segal G, Shuman HA (1999) Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67(5):2117–2124PubMedPubMedCentralGoogle Scholar
  12. 12.
    Correia AM, Ferreira JS, Borges V, Nunes A, Gomes B, Capucho R, Goncalves J, Antunes DM, Almeida S, Mendes A, Guerreiro M, Sampaio DA, Vieira L, Machado J, Simoes MJ, Goncalves P, Gomes JP (2016) Probable Person-to-Person transmission of Legionnaires’ disease. N Engl J Med 374(5):497–498.  https://doi.org/10.1056/NEJMc1505356CrossRefPubMedGoogle Scholar
  13. 13.
    Amaro F, Wang W, Gilbert JA, Anderson OR, Shuman HA (2015) Diverse protist grazers select for virulence-related traits in Legionella. ISME J 9(7):1607–1618.  https://doi.org/10.1038/ismej.2014.248CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sogin ML, Gunderson JH (1987) Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications. Ann N Y Acad Sci 503:125–139CrossRefGoogle Scholar
  15. 15.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925PubMedPubMedCentralGoogle Scholar
  16. 16.
    Page FC (1988) A new key to freshwater and soil gymnamoebae with instructions for culture. Freshwater Biological Association, CumbriaGoogle Scholar
  17. 17.
    Neff RJ (1958) Mechanisms of purifying amoebae by migration on agar surfaces. J Protozool 5(3):226–231.  https://doi.org/10.1111/j.1550-7408.1958.tb02557.xCrossRefGoogle Scholar
  18. 18.
    Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217.  https://doi.org/10.1006/jmbi.2000.4042CrossRefPubMedGoogle Scholar
  19. 19.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574CrossRefGoogle Scholar
  20. 20.
    Albers U, Reus K, Shuman HA, Hilbi H (2005) The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology 151(Pt 1):167–182.  https://doi.org/10.1099/mic.0.27563-0CrossRefPubMedGoogle Scholar
  21. 21.
    Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA (2009) Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 5(7):e1000501.  https://doi.org/10.1371/journal.ppat.1000501CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sims GP, Aitken R, Rogerson A (2002) Identification and phylogenetic analysis of morphologically similar naked amoebae using small subunit ribosomal RNA. J Eukaryot Microbiol 49(6):478–484CrossRefGoogle Scholar
  23. 23.
    Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Genética, Fisiología y MicrobiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Department of MicrobiologyUniversity of ChicagoChicagoUSA

Personalised recommendations