Legionella pp 347-370 | Cite as

Dictyostelium Host Response to Legionella Infection: Strategies and Assays

  • Salvatore BozzaroEmail author
  • Simona Buracco
  • Barbara Peracino
  • Ludwig EichingerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1921)


The professional phagocyte Dictyostelium discoideum is a well-established model organism to study host-pathogen interactions. Dictyostelium amoebae grow as separate, independent cells; they divide by binary fission and take up bacteria and yeast via phagocytosis. In the year 2000, D. discoideum was described by two groups as a novel system for genetic analysis of host-pathogen interactions for the intracellular pathogen Legionella pneumophila. Since then additional microbial pathogens that can be studied in D. discoideum have been reported. The organism has various advantages for the dissection of the complex cross-talk between a host and a pathogen. A fully sequenced and well-curated genome is available, there are excellent molecular genetic tools on the market, and the generation of targeted multiple gene knock-outs as well as the realization of untargeted genetic screens is generally straightforward. Dictyostelium also offers easy cultivation, and the cells are suitable for cell biological studies, which in combination with in vivo expression of fluorescence-tagged proteins allows the investigation of the dynamics of bacterial uptake and infection. Furthermore, a large mutant collection is available at the Dictyostelium stock center, favoring the identification of host resistance or susceptibility genes. Here, we briefly describe strategies to identify host cell factors important during an infection, followed by protocols for cell culture and storage, uptake and infection, and confocal microscopy of infected cells.

Key words

Dictyostelium Legionella Amoeba Phagocytosis Macropinocytosis Host-pathogen interaction Uptake assay Infection Confocal microscopy Flow cytometry 



This work was supported by the Compagnia San Paolo (12-CSP-C03-065) (SB), the Deutsche Forschungsgemeinschaft (TP01, SFB 670, Innate Immunity), and Köln Fortune (LE).


  1. 1.
    Hägele S, Köhler R, Merkert H, Schleicher M et al (2000) Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2:165–171CrossRefGoogle Scholar
  2. 2.
    Solomon JM, Isberg RR (2000) Growth of Legionella pneumophila in Dictyostelium discoideum: a novel system for genetic analysis of host-pathogen interactions. Trends Microbiol 8:478–480CrossRefGoogle Scholar
  3. 3.
    Solomon JM, Rupper A, Cardelli JA, Isberg RR (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68:2939–2947CrossRefGoogle Scholar
  4. 4.
    Farbrother P, Wagner C, Na J, Tunggal B et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8:438–456CrossRefGoogle Scholar
  5. 5.
    Clarke M (2010) Recent insights into host-pathogen interactions from Dictyostelium. Cell Microbiol 12:283–291CrossRefGoogle Scholar
  6. 6.
    Bozzaro S, Eichinger L (2011) The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 12:942–954CrossRefGoogle Scholar
  7. 7.
    Steinert M (2011) Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 22:70–76CrossRefGoogle Scholar
  8. 8.
    Hempstead AD, Isberg RR (2013) Host signal transduction and protein kinases implicated in Legionella infection. Curr Top Microbiol Immunol 376:249–269PubMedPubMedCentralGoogle Scholar
  9. 9.
    Peracino B, Buracco S, Bozzaro S (2013) The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 126:301–311CrossRefGoogle Scholar
  10. 10.
    Steiner B, Weber S, Hilbi H (2018) Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 308(1):49–57CrossRefGoogle Scholar
  11. 11.
    Koller B, Schramm C, Siebert S, Triebel J et al (2016) Dictyostelium discoideum as a novel host system to study the interaction between phagocytes and yeasts. Front Microbiol 7:1665CrossRefGoogle Scholar
  12. 12.
    Hillmann F, Novohradská S, Mattern DJ, Forberger T et al (2015) Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 17:2858–2869CrossRefGoogle Scholar
  13. 13.
    Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A (2003) Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect Immun 71:4862–4872CrossRefGoogle Scholar
  14. 14.
    Lima WC, Lelong E, Cosson P (2011) What can Dictyostelium bring to the study of Pseudomonas infections? Semin Cell Dev Biol 22:77–81CrossRefGoogle Scholar
  15. 15.
    Lima WC, Balestrino D, Forestier C, Cosson P (2014) Two distinct sensing pathways allow recognition of Klebsiella pneumoniae by Dictyostelium amoebae. Cell Microbiol 16:311–323CrossRefGoogle Scholar
  16. 16.
    Sillo A, Matthias J, Konertz R, Bozzaro S et al (2011) Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 13:1793–1811CrossRefGoogle Scholar
  17. 17.
    Barisch C, Soldati T (2017) Mycobacterium marinum degrades both triacylglycerols and phospholipids from its Dictyostelium host to synthesise its own triacylglycerols and generate lipid inclusions. PLoS Pathog 13:e1006095CrossRefGoogle Scholar
  18. 18.
    Brenz Y, Winther-Larsen HC, Hagedorn M (2017) Expanding Francisella models: pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med MicrobiolGoogle Scholar
  19. 19.
    Bozzaro S, Bucci C, Steinert M (2008) Phagocytosis and host–pathogen interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol 271:253–300CrossRefGoogle Scholar
  20. 20.
    Maniak M (2011) Dictyostelium as a model for human lysosomal and trafficking diseases. Semin Cell Dev Biol 22:114–119CrossRefGoogle Scholar
  21. 21.
    Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007CrossRefGoogle Scholar
  22. 22.
    Fajardo M, Schleicher M, Noegel A, Bozzaro S et al (2004) Calnexin, calreticulin and cytoskeleton-associated proteins modulate uptake and growth of Legionella pneumophila in Dictyostelium discoideum. Microbiology 150:2825–2835CrossRefGoogle Scholar
  23. 23.
    Li Z, Dugan AS, Bloomfield G, Skelton J et al (2009) The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe 6:253–267CrossRefGoogle Scholar
  24. 24.
    Shevchuk O, Batzilla C, Hägele S, Kusch H et al (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508CrossRefGoogle Scholar
  25. 25.
    Urwyler S, Nyfeler Y, Ragaz C, Lee H et al (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87CrossRefGoogle Scholar
  26. 26.
    Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460CrossRefGoogle Scholar
  27. 27.
    Weber SS, Ragaz C, Reus K, Nyfeler Y et al (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46CrossRefGoogle Scholar
  28. 28.
    Brombacher E, Urwyler S, Ragaz C, Weber SS et al (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856CrossRefGoogle Scholar
  29. 29.
    Personnic N, Bärlocher K, Finsel I, Hilbi H (2016) Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol 24:450–462CrossRefGoogle Scholar
  30. 30.
    Simon S, Hilbi H (2015) Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors. Front Immunol 6:447CrossRefGoogle Scholar
  31. 31.
    Fey P, Dodson RJ, Basu S, Chisholm RL (2013) One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 983:59–92CrossRefGoogle Scholar
  32. 32.
    Bozzaro S, Peracino B, Eichinger L (2013) Dictyostelium host response to Legionella infection: strategies and assays. Methods Mol Biol 954:417–438CrossRefGoogle Scholar
  33. 33.
    Müller-Taubenberger A, Kortholt A, Eichinger L (2013) Simple system-substantial share: the use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 92:45–53CrossRefGoogle Scholar
  34. 34.
    Swart AL, Harrison CF, Eichinger L, Steinert M et al (2018) Acanthamoeba and Dictyostelium as cellular models for Legionella infection. Front Cell Infect Microbiol 8:61CrossRefGoogle Scholar
  35. 35.
    Mesquita A, Elena C-M, Dominguez E, Sandra M-B et al (2016) Autophagy in Dictyostelium: mechanisms, regulation and disease in a simple biomedical model. Autophagy:1–17Google Scholar
  36. 36.
    Sherwood R, Roy CR (2016) Autophagy evasion and endoplasmic reticulum subversion: the yin and yang of Legionella intracellular infection. Annu Rev Microbiol 70:413–433CrossRefGoogle Scholar
  37. 37.
    Otto GP, Wu MY, Clarke M, Lu H et al (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51:63–72CrossRefGoogle Scholar
  38. 38.
    Tung SM, Unal C, Ley A, Peña C et al (2010) Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 12:765–780CrossRefGoogle Scholar
  39. 39.
    Xiong Q, Ünal C, Matthias J, Steinert M et al (2015) The phenotypes of ATG9, ATG16 and ATG9/16 knock-out mutants imply autophagy-dependent and -independent functions. Open Biol 5:150008CrossRefGoogle Scholar
  40. 40.
    Choy A, Dancourt J, Mugo B, O’Connor TJ et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076CrossRefGoogle Scholar
  41. 41.
    Rolando M, Escoll P, Nora T, Botti J et al (2016) Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A 113:1901–1906CrossRefGoogle Scholar
  42. 42.
    Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352CrossRefGoogle Scholar
  43. 43.
    Haneburger I, Hilbi H (2013) Phosphoinositide lipids and the Legionella pathogen vacuole. Curr Top Microbiol Immunol 376:155–173PubMedGoogle Scholar
  44. 44.
    Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657CrossRefGoogle Scholar
  45. 45.
    Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 123:4039–4051CrossRefGoogle Scholar
  46. 46.
    Riyahi TY, Frese F, Steinert M, Omosigho NN et al (2011) RpkA, a highly conserved GPCR with a lipid kinase domain, has a role in phagocytosis and anti-bacterial defense. PLoS One 6:e27311CrossRefGoogle Scholar
  47. 47.
    Raper KB (1951) Isolation, cultivation, and conservation of simple slime molds. Q Rev Biol 26:169–190CrossRefGoogle Scholar
  48. 48.
    Gerisch G (1960) Zellfunktionen und Zellfunktionswechsel in der Entwicklung vonDictyostelium discoideum: Zellagglutination und Induktion der Fruchtkörperpolarität. Wilhelm Roux Arch Entwickl Mech Org 152:632–654CrossRefGoogle Scholar
  49. 49.
    Fey P, Kowal AS, Gaudet P, Pilcher KE et al (2007) Protocols for growth and development of Dictyostelium discoideum. Nat Protoc 2:1307–1316CrossRefGoogle Scholar
  50. 50.
    Froquet R, Lelong E, Marchetti A, Cosson P (2008) Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc 4:25–30CrossRefGoogle Scholar
  51. 51.
    Sussman M (1966) Biochemical and genetic methods in the study of cellular slime mold development. In: Prescott D (ed) Methods in cell physiology. Academic, Cambridge, MA, pp 397–409Google Scholar
  52. 52.
    Franke J, Kessin R (1977) A defined minimal medium for axenic strains of Dictyostelium discoideum. Proc Natl Acad Sci U S A 74:2157–2161CrossRefGoogle Scholar
  53. 53.
    Watts DJ, Ashworth JM (1970) Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J 119:171–174CrossRefGoogle Scholar
  54. 54.
    Loomis WF (1971) Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res 64:484–486CrossRefGoogle Scholar
  55. 55.
    Maniak M (2001) Fluid-phase uptake and transit in axenic Dictyostelium cells. Biochim Biophys Acta 1525:197–204CrossRefGoogle Scholar
  56. 56.
    Buracco S, Peracino B, Andreini C, Bozzaro S (2018) Differential effects of iron, but not zinc or copper, affects Dictyostelium discoideum cell growth and resistance to Legionella pneumophila. Front Cell Infect Microbiol 7:536CrossRefGoogle Scholar
  57. 57.
    Sussman M (1987) Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol 28:9–29CrossRefGoogle Scholar
  58. 58.
    Laine J, Roxby N, Coukell MB (1975) A simple method for storing cellular slime mold amoebae. Can J Microbiol 21:959–962CrossRefGoogle Scholar
  59. 59.
    Hilbi H, Segal G, Shuman HA (2001) Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603–617CrossRefGoogle Scholar
  60. 60.
    Hilbi H, Kortholt A (2017) Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection. Small GTPases:1–7Google Scholar
  61. 61.
    Isaac DT, Laguna RK, Valtz N, Isberg RR (2015) MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc Natl Acad Sci U S A 112:E5208–E5217CrossRefGoogle Scholar
  62. 62.
    Shevchuk O, Pägelow D, Rasch J, Döhrmann S et al (2014) Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection. Int J Med Microbiol 304:1169–1181CrossRefGoogle Scholar
  63. 63.
    Peracino B, Wagner C, Balest A, Balbo A et al (2006) Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7:22–38CrossRefGoogle Scholar
  64. 64.
    Schmölders J, Manske C, Otto A, Hoffmann C et al (2017) Comparative proteomics of purified pathogen vacuoles correlates intracellular replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 16:622–641CrossRefGoogle Scholar
  65. 65.
    Tiaden ANN, Kessler A, Hilbi H (2013) Analysis of Legionella infection by flow cytometry. Methods Mol Biol 954:233–249CrossRefGoogle Scholar
  66. 66.
    Eichinger L, Rivero F (2006) Methods in molecular biology—Dictyostelium discoideum protocols. Humana Press, Totowa, NJGoogle Scholar
  67. 67.
    Weber S, Hilbi H (2014) Live cell imaging of phosphoinositide dynamics during Legionella infection. Methods Mol Biol 1197:153–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical and Biological SciencesUniversity of TurinOrbassanoItaly
  2. 2.Center for Biochemistry, Medical FacultyUniversity of CologneCologneGermany

Personalised recommendations