Legionella pp 179-189 | Cite as

Sorting of Phagocytic Cells Infected with Legionella pneumophila

Part of the Methods in Molecular Biology book series (MIMB, volume 1921)


The ability of Legionella pneumophila to colonize host cells and to form a replicative vacuole depends on its ability to counteract the host cell response by secreting more than 300 effectors. The host cell responds to this bacterial invasion with extensive intracellular signaling to counteract the replication of the pathogen. When studying L. pneumophila infection in vitro, only a small proportion of the cell lines or primary cells used to analyze the host response are infected; the study of such a mixed cell population leads to unprecise results. In order to study the multitude of pathogen-induced phenotypic changes occurring in the host cell, the separation of infected from uninfected cells is a top priority. Here we describe a highly efficient FACS-derived protocol to separate cells infected with a L. pneumophila strain encoding a fluorescent protein. Indeed, the highly infected, homogenous cell population obtained after sorting is the best possible starting point for the studies of infection-induced effects.

Key words

Legionella pneumophila Phagocytic cells Fluorescent proteins Single cell sorting 



Work in the CB laboratory is financed by the Institut Pasteur, the grant ANR-10-LABX-62-IBEID and the grant ANR-18-CE15-0005-01.


  1. 1.
    Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24CrossRefGoogle Scholar
  2. 2.
    Isaac DT, Isberg R (2014) Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol 9:343–359CrossRefGoogle Scholar
  3. 3.
    Farbrother P, Wagner C, Na J, Tunggal B, Morio T, Urushihara H, Tanaka Y, Schleicher M, Steinert M, Eichinger L (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8:438–456CrossRefGoogle Scholar
  4. 4.
    Fortier A, Faucher SP, Diallo K, Gros P (2011) Global cellular changes induced by Legionella pneumophila infection of bone marrow-derived macrophages. Immunobiology 216:1274–1285CrossRefGoogle Scholar
  5. 5.
    Escoll P, Song OR, Viana F, Steiner B, Lagache T, Olivo-Marin JC, Impens F, Brodin P, Hilbi H, Buchrieser C (2017) Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe 22(3):302–316.e7CrossRefGoogle Scholar
  6. 6.
    Du Bois I, Marsico A, Bertrams W, Schweiger MR, Caffrey BE, Sittka-Stark A, Eberhardt M, Vera J, Vingron M, Schmeck BT (2016) Genome-wide chromatin profiling of Legionella pneumophila-infected human macrophages reveals activation of the probacterial host factor TNFAIP2. J Infect Dis 214:454–463CrossRefGoogle Scholar
  7. 7.
    Shevchuk O, Batzilla C, Hägele S, Kusch H, Engelmann S, Hecker M, Haas A, Heuner K, Glöckner G, Steinert M (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508CrossRefGoogle Scholar
  8. 8.
    Naujoks J, Tabeling C, Dill BD, Hoffmann C, Brown AS, Kunze M, Kempa S, Peter A, Mollenkopf H-J, Dorhoi A et al (2016) IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog 12:e1005408CrossRefGoogle Scholar
  9. 9.
    Tiaden AN, Kessler A, Hilbi H (2013) Analysis of Legionella infection by flow cytometry. Methods Mol Biol 954:233–249CrossRefGoogle Scholar
  10. 10.
    Rolando M, Buchrieser C (2014) Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol 24(12):771–778CrossRefGoogle Scholar
  11. 11.
    Albert-Weissenberger C, Sahr T, Sismeiro O, Hacker J, Heuner K, Buchrieser C (2010) Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. J Bacteriol 192:446–455CrossRefGoogle Scholar
  12. 12.
    Zaitoun I, Erickson CS, Schell K, Epstein ML (2010) Use of RNA later in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed. BMC Res Notes 3:328CrossRefGoogle Scholar
  13. 13.
    Nishimoto KP, Newkirk D, Hou S, Fruehauf J, Nelson EL (2007) Fluorescence activated cell sorting (FACS) using RNAlater to minimize RNA degradation and perturbation of mRNA expression from cells involved in initial host microbe interactions. J Microbiol Methods 70:205–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Pasteur, Biology of Intracellular BacteriaParisFrance
  2. 2.CNRS UMR 3525ParisFrance
  3. 3.Institut Pasteur, Biologie des Bactéries IntracellulairesParisFrance

Personalised recommendations