A Walkthrough to the Use of GreeNC: The Plant lncRNA Database

  • Andreu Paytuvi-Gallart
  • Walter Sanseverino
  • Riccardo Aiese CiglianoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1933)


Experimentally validated plant lncRNAs have been shown to regulate important agronomic traits such as phosphate starvation response, flowering time, and interaction with symbiotic organisms, making them of great interest in plant biology and in breeding. We developed a pipeline to annotate lncRNAs and applied it to 37 plant species and 6 algae, resulting in the annotation of more than 120,000 lncRNAs. To facilitate the study of lncRNAs for the plant research community, the information gathered is organized in the Green Non-Coding Database (GreeNC, This chapter contains a detailed explanation of the content of GreeNC and how to access both programmatically and with a web browser.

Key words

lncRNAs Plants Annotation Pre-miRNA Folding energy lncRNAs database Plant lncRNAs database Database Repository 



We thank Dr. Antonio Hermoso Pulido from Centre for Genomic Regulation (CRG), who was also involved in the database development.


  1. 1.
    Encode Consortium, Carolina N, Hill C (2013) For junk DNA. Nature 489:57–74CrossRefGoogle Scholar
  2. 2.
    Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108CrossRefGoogle Scholar
  3. 3.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037CrossRefGoogle Scholar
  4. 4.
    Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79CrossRefGoogle Scholar
  5. 5.
    Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802CrossRefGoogle Scholar
  6. 6.
    Shin JH, Chekanova JA (2014) Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 10:e1004612. Scholar
  7. 7.
    Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci 109:2654–2659CrossRefGoogle Scholar
  8. 8.
    Campalans A (2004) Enod40, a short open Reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell Online 16:1047–1059CrossRefGoogle Scholar
  9. 9.
    Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One 7:e43047. Scholar
  10. 10.
    Li L, Eichten SR, Shimizu R et al (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40. Scholar
  11. 11.
    Lu T, Zhu C, Lu G et al (2012) Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 13:721. Scholar
  12. 12.
    Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983CrossRefGoogle Scholar
  13. 13.
    Wen J, Parker BJ, Weiller GF (2007) In Silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In: In Silico Biol, vol 7, pp 485–505Google Scholar
  14. 14.
    Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61. Scholar
  15. 15.
    Flórez-Zapata NMV, Reyes-Valdés MH, Martínez O (2016) Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genomics 17:490. Scholar
  16. 16.
    Joshi RK, Megha S, Basu U, Rahman MH, Kav NNV (2016) Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus. PLoS One 11:e0158784. Scholar
  17. 17.
    Jain P, Sharma V, Dubey H, Singh PK, Kapoor R, Kumari M, Singh J (2017) Open access Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae. Bioinformation 13:249–255CrossRefGoogle Scholar
  18. 18.
    Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42:D98. Scholar
  19. 19.
    Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989CrossRefGoogle Scholar
  20. 20.
    Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29:1068–1071CrossRefGoogle Scholar
  21. 21.
    Xuan H, Zhang L, Liu X, Han G, Li J, Li X, Liu A, Liao M, Zhang S (2015) PLNlncRbase: a resource for experimentally identified lncRNAs in plants. Gene 573:328–332CrossRefGoogle Scholar
  22. 22.
    Quek XC, Thomson DW, Maag JLV, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173CrossRefGoogle Scholar
  23. 23.
    Szcześniak MW, Rosikiewicz W, Makałowska I (2016) CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol 57:e8CrossRefGoogle Scholar
  24. 24.
    Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178. Scholar
  25. 25.
    DePamphilis CW, Palmer JD, Rounsley S et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089CrossRefGoogle Scholar
  26. 26.
    Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–483CrossRefGoogle Scholar
  27. 27.
    Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202. Scholar
  28. 28.
    Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  29. 29.
    Slotte T, Hazzouri KM, Ågren JA et al (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835CrossRefGoogle Scholar
  30. 30.
    Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996CrossRefGoogle Scholar
  31. 31.
    Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251CrossRefGoogle Scholar
  32. 32.
    Wu GA, Prochnik S, Jenkins J et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662CrossRefGoogle Scholar
  33. 33.
    Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. Scholar
  34. 34.
    Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, Schmutz J, Plomion C, Gion JM (2015) High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytol 206:1283–1296CrossRefGoogle Scholar
  35. 35.
    Yang R, Jarvis DE, Chen H et al (2013) The reference genome of the halophytic plant Eutrema salsugineum. Front Plant Sci 4.
  36. 36.
    Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefGoogle Scholar
  37. 37.
    Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713CrossRefGoogle Scholar
  38. 38.
    Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefGoogle Scholar
  39. 39.
    Wang Z, Hobson N, Galindo L et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473CrossRefGoogle Scholar
  40. 40.
    Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839CrossRefGoogle Scholar
  41. 41.
    Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current Progress, future directions. Trop Plant Biol 5:88–94CrossRefGoogle Scholar
  42. 42.
    Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524CrossRefGoogle Scholar
  43. 43.
    Worden AZ, Lee JH, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324:268–272CrossRefGoogle Scholar
  44. 44.
    Droc G, Larivière D, Guignon V et al (2013) The banana genome hub. Database 2013.
  45. 45.
    Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883. Scholar
  46. 46.
    Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci 104:7705–7710CrossRefGoogle Scholar
  47. 47.
    Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604CrossRefGoogle Scholar
  48. 48.
    Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427CrossRefGoogle Scholar
  49. 49.
    Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefGoogle Scholar
  50. 50.
    Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956CrossRefGoogle Scholar
  51. 51.
    Banks JA, Nishiyama T, Hasebe M et al (2011) The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963CrossRefGoogle Scholar
  52. 52.
    Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561CrossRefGoogle Scholar
  53. 53.
    Sato S, Tabata S, Hirakawa H et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  54. 54.
    Xu X, Pan S, Cheng S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  55. 55.
    Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefGoogle Scholar
  56. 56.
    Wang W, Haberer G, Gundlach H et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311. Scholar
  57. 57.
    Motamayor JC, Mockaitis K, Schmutz J et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14:r53. Scholar
  58. 58.
    Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefGoogle Scholar
  59. 59.
    Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga volvox carteri. Science 329:223–226CrossRefGoogle Scholar
  60. 60.
    Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  61. 61.
    Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefGoogle Scholar
  62. 62.
    International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  63. 63.
    Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, Schmutz J, Willis JH, Rokhsar DS (2013) Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci 110:19478–19482CrossRefGoogle Scholar
  64. 64.
    Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefGoogle Scholar
  65. 65.
    Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14:498. Scholar
  66. 66.
    Bateman A, Martin MJ, O’Donovan C et al (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212CrossRefGoogle Scholar
  67. 67.
    Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345. Scholar
  68. 68.
    Nawrocki EP, Burge SW, Bateman A et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137CrossRefGoogle Scholar
  69. 69.
    Griffiths-Jones S (2010) MiRBase: MicroRNA sequences and annotation. Curr Protoc Bioinformatics 34:1291–12910Google Scholar
  70. 70.
    Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Andreu Paytuvi-Gallart
    • 1
  • Walter Sanseverino
    • 1
  • Riccardo Aiese Cigliano
    • 1
    Email author
  1. 1.Sequentia Biotech SLBarcelonaSpain

Personalised recommendations