An Overview of miRNA and miRNA Target Analysis Tools

  • Anna Lukasik
  • Piotr ZielenkiewiczEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)


microRNA molecules have been shown to play various significant roles in many physiological and pathophysiological processes in living organisms. The tremendous interest in these molecules has led to the significant development and constant release of a number of computational tools useful for basic as well as advanced miRNA-related analyses. These approaches have various constantly evolving utilities, such as detection, target prediction, functional annotation, and many others. In this chapter, we provide an overview of several computational tools useful for broadly defined plant miRNA analysis.

Key words

miRNA Analysis Tools Bioinformatics Target gene Prediction 


  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefGoogle Scholar
  2. 2.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefGoogle Scholar
  3. 3.
    Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289CrossRefGoogle Scholar
  4. 4.
    Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205CrossRefGoogle Scholar
  5. 5.
    Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520CrossRefGoogle Scholar
  6. 6.
    Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672CrossRefGoogle Scholar
  7. 7.
    Islam W, Islam SU, Qasim M, Wang L (2017) Host-Pathogen interactions modulated by small RNAs. RNA Biol 14:891–904CrossRefGoogle Scholar
  8. 8.
    Komiya R (2017) Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. J Plant Res 130:17–23CrossRefGoogle Scholar
  9. 9.
    Lukasik A, Zielenkiewicz P (2016) Plant microRNAs-novel players in natural medicine? Int J Mol Sci 18:9CrossRefGoogle Scholar
  10. 10.
    Rajendiran A, Chatterjee A, Pan A (2018) Computational approaches and related tools to identify microRNAs in a species: a bird’s eye view. Interdiscip Sci 10(3):616–635. Scholar
  11. 11.
    Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD (2016) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44:24–44CrossRefGoogle Scholar
  12. 12.
    Aghaee-Bakhtiari SH, Arefian E, Lau P (2018) miRandb: a resource of online services for miRNA research. Brief Bioinform 19(2):254–262. Scholar
  13. 13.
    Riffo-Campos AL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17:1987CrossRefGoogle Scholar
  14. 14.
    Singh NK (2017) microRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci 9:357–377CrossRefGoogle Scholar
  15. 15.
    Kleftogiannis D, Korfiati A, Theofilatos K, Likothanassis S, Tsakalidis A, Mavroudi S (2013) Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. J Biomed Inform 46:563–573CrossRefGoogle Scholar
  16. 16.
    Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K (2017) A compilation of Web-based research tools for miRNA analysis. Brief Funct Genomics 16(5):249–273. Scholar
  17. 17.
    Bonnal RJ, Rossi RL, Carpi D, Ranzani V, Abrignani S, Pagani M (2015) miRiadne: a web tool for consistent integration of miRNA nomenclature. Nucleic Acids Res 43:W487–W492CrossRefGoogle Scholar
  18. 18.
    Henry VJ, Bandrowski AE, Pepin AS, Gonzalez BJ, Desfeux A (2014) OMICtools: an informative directory for multi-omic data analysis. Database 2014:bau069CrossRefGoogle Scholar
  19. 19.
    Lukasik A, Wojcikowski M, Zielenkiewicz P (2016) Tools4miRs – one place to gather all the tools for miRNA analysis. Bioinformatics 32:2722–2724CrossRefGoogle Scholar
  20. 20.
    Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092CrossRefGoogle Scholar
  21. 21.
    Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415CrossRefGoogle Scholar
  22. 22.
    Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615CrossRefGoogle Scholar
  23. 23.
    Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res. Scholar
  24. 24.
    Rueda A, Barturen G, Lebron R, Gomez-Martin C, Alganza A, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:W467–W473CrossRefGoogle Scholar
  25. 25.
    Gomez-Martin C, Lebron R, Rueda A, Oliver JL, Hackenberg M (2017) sRNAtoolboxVM: small RNA analysis in a virtual machine. Methods Mol Biol 1580:149–174CrossRefGoogle Scholar
  26. 26.
    Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259CrossRefGoogle Scholar
  27. 27.
    Chorostecki U, Moro B, Rojas AML, Debernardi JM, Schapire AL, Notredame C, Palatnik JF (2017) Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell 29:1248–1261PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68CrossRefGoogle Scholar
  29. 29.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefGoogle Scholar
  30. 30.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  31. 31.
    Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs--the overlooked repertoire in the dynamic microRNAome. Trends Genet 28:544–549CrossRefGoogle Scholar
  32. 32.
    Ahmed F, Senthil-Kumar M, Lee S, Dai X, Mysore KS, Zhao PX (2014) Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol 11:1414–1429CrossRefGoogle Scholar
  33. 33.
    Sablok G, Srivastva AK, Suprasanna P, Baev V, Ralph PJ (2015) isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front Plant Sci 6:949CrossRefGoogle Scholar
  34. 34.
    Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E, Krishnan K, Gardiner B, Wang X, Nones K, Steen JA, Matigian NA, Wood DL, Kassahn KS, Waddell N, Shepherd J, Lee C, Ichikawa J, McKernan K, Bramlett K, Kuersten S, Grimmond SM (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12:R126CrossRefGoogle Scholar
  35. 35.
    Pantano L, Estivill X, Marti E (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 38:e34CrossRefGoogle Scholar
  36. 36.
    Yang K, Sablok G, Qiao G, Nie Q, Wen X (2017) isomiR2Function: an integrated workflow for identifying microRNA variants in plants. Front Plant Sci 8:322PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang Y, Zang Q, Zhang H, Ban R, Yang Y, Iqbal F, Li A, Shi Q (2016) DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 44:W166–W175CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X, Cooke HJ, Xue Y, Shi Q (2012) CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics 28:1925–1927CrossRefGoogle Scholar
  39. 39.
    Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044CrossRefGoogle Scholar
  40. 40.
    Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687CrossRefGoogle Scholar
  41. 41.
    Tav C, Tempel S, Poligny L, Tahi F (2016) miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res 44:W181–W184CrossRefGoogle Scholar
  42. 42.
    Tempel S, Tahi F (2012) A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res 40:e80CrossRefGoogle Scholar
  43. 43.
    Yu L, Shao C, Ye X, Meng Y, Zhou Y, Chen M (2016) miRNA digger: a comprehensive pipeline for genome-wide novel miRNA mining. Sci Rep 6:18901CrossRefGoogle Scholar
  44. 44.
    Ma X, Shao C, Jin Y, Wang H, Meng Y (2014) Long non-coding RNAs: a novel endogenous source for the generation of Dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol 11:373–390CrossRefGoogle Scholar
  45. 45.
    Meng Y, Gou L, Chen D, Wu P, Chen M (2010) High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism. J Exp Bot 61:3833–3837CrossRefGoogle Scholar
  46. 46.
    Gudys A, Szczesniak MW, Sikora M, Makalowska I (2013) HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics 14:83CrossRefGoogle Scholar
  47. 47.
    Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282CrossRefGoogle Scholar
  48. 48.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRefGoogle Scholar
  49. 49.
    Liu Q, Wang F, Axtell MJ (2014) Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell 26:741–753CrossRefGoogle Scholar
  50. 50.
    Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23CrossRefGoogle Scholar
  51. 51.
    Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159CrossRefGoogle Scholar
  52. 52.
    Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568CrossRefGoogle Scholar
  53. 53.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037CrossRefGoogle Scholar
  54. 54.
    Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28CrossRefGoogle Scholar
  55. 55.
    Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287CrossRefGoogle Scholar
  56. 56.
    Zagganas K, Vergoulis T, Paraskevopoulou MD, Vlachos IS, Skiadopoulos S, Dalamagas T (2017) BUFET: boosting the unbiased miRNA functional enrichment analysis using bitsets. BMC Bioinformatics 18:399CrossRefGoogle Scholar
  57. 57.
    Bleazard T, Lamb JA, Griffiths-Jones S (2015) Bias in microRNA functional enrichment analysis. Bioinformatics 31:1592–1598CrossRefGoogle Scholar
  58. 58.
    Busk PK (2014) A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics 15:29CrossRefGoogle Scholar
  59. 59.
    Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11:70CrossRefGoogle Scholar
  60. 60.
    Cirera S, Busk PK (2014) Quantification of miRNAs by a simple and specific qPCR method. Methods Mol Biol 1182:73–81CrossRefGoogle Scholar
  61. 61.
    Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690CrossRefGoogle Scholar
  62. 62.
    Patel P, Ramachandruni SD, Kakrana A, Nakano M, Meyers BC (2016) miTRATA: a web-based tool for microRNA truncation and tailing analysis. Bioinformatics 32:450–452CrossRefGoogle Scholar
  63. 63.
    Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507CrossRefGoogle Scholar
  64. 64.
    Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675CrossRefGoogle Scholar
  65. 65.
    Zhai J, Zhao Y, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji L, Xie M, Cao X, Yu B, Timmermans M, Yang B, Chen X, Meyers BC (2013) Plant microRNAs display differential 3′ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25:2417–2428CrossRefGoogle Scholar
  66. 66.
    Zhai J, Meyers BC (2012) Deep sequencing from hen1 mutants to identify small RNA 3′ modifications. Cold Spring Harb Symp Quant Biol 77:213–219CrossRefGoogle Scholar
  67. 67.
    Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A, Volders PJ, Zeka F, Ongenaert M, Mestdagh P, Vandesompele J (2014) miRBase Tracker: keeping track of microRNA annotation changes. Database 2014:bau080PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Department of Plant Molecular Biology, Institute of Experimental Plant Biology and BiotechnologyUniversity of WarsawWarsawPoland

Personalised recommendations