Advertisement

Detection of Histone Modifications Associated with miRNAs

  • Sara Hernández-Castellano
  • Clelia De-la-PeñaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)

Abstract

The posttranslational modifications of histones and miRNAs are key epigenetic mechanisms participating in the development, growth, and reproduction of plants. Recently, coordination between these two mechanisms has been demonstrated; each mechanism can be controlled by the other for the regulation of several biological processes. For example, the acetylation of histone H3, a key modification for chromatin remodeling and gene activation, has been linked to the actions of miRNA. In this work, we describe a method for the isolation and immunodetection of two posttranslational modifications in the residues of lysine 9 and 27 of H3, which have been associated with long miRNAs in plants.

Key words

Epigenetics Histone modification MicroRNAs Agave angustifolia 

Notes

Acknowledgments

This work was supported by grants from Consejo Nacional de Ciencia y Tecnología (CONACYT) to CD (CB2016-285898 and FC2016-1515) and a CONACYT scholarship to SHC (271240).

References

  1. 1.
    Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Scheid OM (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell 22:34–47CrossRefGoogle Scholar
  2. 2.
    Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315CrossRefGoogle Scholar
  3. 3.
    De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM, Avilez-Montalvo RN, Loyola-Vargas VM (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635CrossRefGoogle Scholar
  4. 4.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  5. 5.
    Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378CrossRefGoogle Scholar
  6. 6.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  7. 7.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Wang F, Juan L (2015) MicroRNA promoter identification in Arabidopsis using multiple histone markers. Biomed Res Int 2015:10Google Scholar
  9. 9.
    Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933CrossRefGoogle Scholar
  10. 10.
    Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X (2018) Canonical and noncanonical actions of Arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell 30:134–152CrossRefGoogle Scholar
  11. 11.
    Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475CrossRefGoogle Scholar
  12. 12.
    Jia X, Yan J, Tang G (2011) MicroRNA-mediated DNA methylation in plants. Front Biol 6:133–139CrossRefGoogle Scholar
  13. 13.
    Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou D-X (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899CrossRefGoogle Scholar
  14. 14.
    Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307CrossRefGoogle Scholar
  15. 15.
    Wang X, Zheng G, Dong D (2015) Coordinated action of histone modification and microRNA regulations in human genome. Gene 570:277–281CrossRefGoogle Scholar
  16. 16.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefGoogle Scholar
  17. 17.
    Horn PJ, Peterson CL (2006) Heterochromatin assembly: a new twist on an old model. Chromosom Res 14:83–94CrossRefGoogle Scholar
  18. 18.
    Kuo M-H, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20:615–626CrossRefGoogle Scholar
  19. 19.
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794CrossRefGoogle Scholar
  20. 20.
    Almeida MI, Reis RM, Calin GA (2011) MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 717:1–8CrossRefGoogle Scholar
  21. 21.
    Gosline SJC, Gurtan AM, JnBaptiste CK, Bosson A, Milani P, Dalin S, Matthews BJ, Yap YS, Sharp PA, Fraenkel E (2016) Elucidating MicroRNA regulatory networks using transcriptional, post-transcriptional, and histone modification measurements. Cell Rep 14:310–319CrossRefGoogle Scholar
  22. 22.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sara Hernández-Castellano
    • 1
  • Clelia De-la-Peña
    • 1
    Email author
  1. 1.Unidad de BiotecnologíaCentro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations