Advertisement

The Plant microRNA Pathway: The Production and Action Stages

  • Joseph L. Pegler
  • Christopher P. L. Grof
  • Andrew L. EamensEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)

Abstract

Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional regulation of gene expression in plant development and environmental stress adaptation or in response to pathogen challenge. The plant microRNA pathway is readily separated into two distinct stages: (1) the production stage, which is localized to the plant cell nucleus and where the microRNA small RNA is processed from a double-stranded RNA precursor transcript, and (2) the action stage, which is localized to the plant cell cytoplasm and where the mature microRNA small RNA is loaded into an effector complex and is used by the complex as a sequence specificity guide to direct expression repression of target genes harboring highly complementary microRNA target sequences. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway requiring a small set of core machinery proteins. However, contemporary research has demonstrated that the plant microRNA pathway is highly dynamic, and to allow for this flexibility, a large and highly functionally diverse set of machinery proteins is now known to be required. For example, recent research has shown that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism of RNA silencing: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, here we report on both the core and auxiliary sets of machinery proteins now known to be required for both microRNA production and microRNA action in plants.

Key words

Arabidopsis thaliana microRNA microRNA pathway microRNA production microRNA action RNA silencing Gene expression regulation Core machinery protein Auxiliary machinery protein 

References

  1. 1.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004) Identification of 20 microRNA from Oryza sativa. Nucl Acids Res 32:1688–1695PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8:R96PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhang W, Luo Y, Gong X, Zeng W, Li S (2009) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zanca AS, Vicentini R, Ortiz-Morea FA, Del Bem LE, da Silva MJ, Vincentz M, Nogueira FT (2010) Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol 10:260PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Aukeman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741CrossRefGoogle Scholar
  11. 11.
    Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. PNAS 101:1093–1098PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL, Zhang W, Sunkar R (2010) Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11:52PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A, Morel JB, Crété P, Chen X, Vaucheret H (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13:843–848PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Radwan O, Liu Y, Clough SJ (2011) Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. Mol Plant-Microbe Interact 24:958–972PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC (2012) Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S (2012) miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett 586:3242–3248PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gazzani S, Li M, Maistri S, Scarponi E, Graziola M, Barbaro E, Wunder J, Furini A, Saedler H, Varotto C (2009) Evolution of MIR168 paralogs in Brassicaceae. BMC Evol Biol 9:62PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Meyers BC, Green PJ, Lu C (2008) miRNAs in the plant genome: all things great and small. Genome Dyn 4:108–118PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21:790–797PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kim S, Yang JY, Xu J, Jang IC, Prigge MJ, Chua NH (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49:1634–1644PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fang X, Cui Y, Li Y, Qi Y (2015) Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat Plants 1:15075PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bielewicz D, Kalak M, Kalyna M, Windels D, Barta A, Vazquez F, Szweykowska-Kulinska Z, Jarmolowski A (2013) Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Rep 14:622–628PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D, Michalak M, Borst JW, Jarmolowski A, Szweykowska-Kulinska Z (2016) Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res 45:2757–2775PubMedCentralGoogle Scholar
  30. 30.
    Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fujioka Y, Utsumi M, Ohba Y, Watanabe Y (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1453PubMedCrossRefGoogle Scholar
  33. 33.
    Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500PubMedCrossRefGoogle Scholar
  34. 34.
    Bouché N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. PNAS 105:9970–9975PubMedCrossRefGoogle Scholar
  36. 36.
    Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41PubMedCrossRefGoogle Scholar
  39. 39.
    Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48PubMedCrossRefGoogle Scholar
  40. 40.
    Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23:1675–1689PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen X, Liu J, Cheng Y, Jia D (2002) HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129:1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkaitis G (2015) Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43:2802–2812PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C (2009) Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21:1762–1768PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31:267–278PubMedCrossRefGoogle Scholar
  45. 45.
    Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  48. 48.
    Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504PubMedCrossRefGoogle Scholar
  49. 49.
    Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS (2009) Cyclophilin 40 is required for microRNA activity in Arabidopsis. PNAS 106:5424–5429PubMedCrossRefGoogle Scholar
  50. 50.
    Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 286:38184–38189PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zhang S, Xie M, Ren G, Yu B (2013) CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. PNAS 110:17555–17593Google Scholar
  54. 54.
    Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445PubMedCrossRefGoogle Scholar
  55. 55.
    Speth C, Laubinger S (2014) RACK1 and the microRNA pathway: is it déjà-vu all over again? Plant Signal Behav 9:e27909PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749CrossRefGoogle Scholar
  57. 57.
    Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhao L, Kim Y, Dinh TT, Chen X (2007) miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J 51:840–849PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870PubMedCrossRefGoogle Scholar
  60. 60.
    Karlsson P, Christie MD, Seymour DK, Wang H, Wang X, Hagmann J, Kulcheski F, Manavella PA (2015) KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. PNAS 112:14096–14101PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Raghuram B, Sheikh AH, Rustagi Y, Sinha AK (2015) MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis. FEBS J 282:521–536PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Su C, Li Z, Cheng J, Li L, Zhong S, Liu L, Zheng Y, Zheng B (2017) The protein Phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by antagonizing the MAPK Cascade in Arabidopsis. Dev Cell 41:527–539PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Yan J, Wang P, Wang B, Hsu CC, Tang K, Zhang H, Hou YJ, Zhao Y, Wang Q, Zhao C, Zhu X, Tao WA, Li J, Zhu JK (2017) The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genet 13:e1006753PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cho SK, Ben Chaabane S, Shah P, Poulsen CP, Yang SW (2014) COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 5:5867PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhang Z, Guo X, Ge C, Ma Z, Jiang M, Li T, Koiwa H, Yang SW, Zhang X (2017) KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. PNAS 114:4011–4016PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. PNAS 109:18198–18203PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. PNAS 109:12817–12821PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–1997PubMedCrossRefGoogle Scholar
  69. 69.
    Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. PNAS 105:10073–10078PubMedCrossRefGoogle Scholar
  70. 70.
    Pélissier T, Clavel M, Chaparro C, Pouch-Pélissier MN, Vaucheret H, Deragon JM (2011) Double-stranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels in Arabidopsis. RNA 17:1502–1510PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T (2007) The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol Biol 63:777–785PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Eamens AL, Kim KW, Curtin SJ, Waterhouse PM (2012) DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. PLoS One 7:e35933PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Curtin SJ, Watson JM, Smith NA, Eamens AL, Blanchard CL, Waterhouse PM (2008) The roles of plant dsRNA-binding proteins in RNAi-like pathways. FEBS Lett 582:2753–2760PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188PubMedCrossRefGoogle Scholar
  75. 75.
    Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM (2015) Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat Plants 1:14027PubMedCrossRefGoogle Scholar
  76. 76.
    Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. PNAS 102:11928–11933PubMedCrossRefGoogle Scholar
  77. 77.
    Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2002) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. PNAS 97:11650–11654CrossRefGoogle Scholar
  78. 78.
    Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mallory A, Vaucheret H (2009) ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO Rep 10:521–526PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O (2011) Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. PNAS 108:10466–10471PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kim KW, Eamens AL, Waterhouse PM (2011) RNA processing activities of the Arabidopsis Argonaute protein family. In: Grabowski P (ed) RNA processing. InTech, RijekaGoogle Scholar
  85. 85.
    Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Botany 62:1611–1620CrossRefGoogle Scholar
  87. 87.
    Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9:87PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Li XM, Sang YL, Zhao XY, Zhang XS (2013) High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 8:e72852PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mallory AC, Hinze A, Tucker MR, Bouché N, Gasciolli V, Elmayan T, Lauressergues D, Jauvion V, Vaucheret H, Laux T (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5:e1000646PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481PubMedPubMedCentralGoogle Scholar
  92. 92.
    Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maunoury N, Vaucheret H (2011) AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS One 6:e28729PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Brodersen P, Sakvarelidze-Achard L, Schaller H, Khafif M, Schott G, Bendahmane A, Voinnet O (2012) Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis. PNAS 109:1778–1783PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. PNAS 109:315–320PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Eamens AL, Kim KW, Waterhouse PM (2012) DRB2, DRB3 and DRB5 function in a non-canonical microRNA pathway in Arabidopsis thaliana. Plant Signal Behav 7:1224–1229PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT, Meyers BC, Mo B, Chen X (2012) The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr Biol 22:689–694PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ren G, Chen X, Yu B (2012) Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol 22:695–700PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tu B, Liu L, Xu C, Zhai J, Li S, Lopez MA, Zhao Y, Yu Y, Ramachandran V, Ren G, Yu B, Li S, Meyers BC, Mo B, Chen X (2015) Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11:e1005119PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zhai J, Zhao Y, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji L, Xie M, Cao X, Yu B, Timmermans M, Yang B, Chen X, Meyers BC (2013) Plant microRNAs display differential 3′ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25:2417–2428PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lu S, Sun YH, Chiang VL (2009) Adenylation of plant miRNAs. Nucleic Acids Res 37:1878–1885PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yu Y, Ji L, Le BH, Zhai J, Chen J, Luscher E, Gao L, Liu C, Cao X, Mo B, Ma J, Meyers BC, Chen X (2017) ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol 15:e2001272PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joseph L. Pegler
    • 1
  • Christopher P. L. Grof
    • 1
  • Andrew L. Eamens
    • 1
    Email author
  1. 1.Faculty of Science, Centre for Plant Science, School of Environmental and Life SciencesUniversity of NewcastleCallaghanAustralia

Personalised recommendations