Functional Analysis of Root microRNAs by a Constitutive Overexpression Approach in a Composite Plant System

  • Damien Formey
  • José Ángel Martín-Rodríguez
  • Georgina HernándezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1932)


Agrobacterium-mediated transformation is a fast and efficient method for genome modification in plants. In this protocol, we apply this technique for the analysis of root microRNA functionality. The induction of hairy roots constitutively overexpressing a given microRNA precursor allows us, in a simple way, to modify the accumulation of specific mature microRNA and analyze the consequence of this alteration on a phenotype of interest. This method generates ready-to-phenotype “composite plants” with untransformed aerial part and microRNA-overexpressing root system, in about 20 days.

Key words

microRNA Overexpression Agrobacterium rhizogenes T-DNA Hairy roots 



The work in our group has been supported by Dirección General de Asuntos del Personal Académico (DGAPA)—UNAM (grants no. PAPIIT IN200816 and IA203218).


  1. 1.
    Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854CrossRefGoogle Scholar
  2. 2.
    Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K et al (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378CrossRefGoogle Scholar
  3. 3.
    Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE et al (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant-Microbe Interact 19:1385–1393CrossRefGoogle Scholar
  4. 4.
    Valdés-López O, Arenas-Huertero C, Ramírez M et al (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31:1834–1843CrossRefGoogle Scholar
  5. 5.
    Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572CrossRefGoogle Scholar
  6. 6.
    Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221CrossRefGoogle Scholar
  7. 7.
    Savka MA (1990) Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503CrossRefGoogle Scholar
  8. 8.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefGoogle Scholar
  9. 9.
    Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. BioTechniques 39:519–525CrossRefGoogle Scholar
  10. 10.
    Yekta S, Shih IH, Bartel DP (2004) microRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596CrossRefGoogle Scholar
  11. 11.
    Parizotto EA, Dunoyer P, Rahm N et al (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Damien Formey
    • 1
  • José Ángel Martín-Rodríguez
    • 1
  • Georgina Hernández
    • 1
    Email author
  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico

Personalised recommendations