Advertisement

Sorghum pp 121-140 | Cite as

Sorghum Phytochemicals and Their Potential Impact on Human Health

  • Linda DykesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1931)

Abstract

Sorghum contains a wide array of phytochemicals and their levels are affected by the genotype. Phytochemicals identified in sorghum include phenolic acids, flavonoids, condensed tannins, polycosanols, phytosterols, stilbenes, and phenolamides. Most of these phytochemicals are concentrated in the bran fraction and have been shown to have several potential health benefits, which include antidiabetic, cholesterol-lowering, anti-inflammatory, and anticancer properties. This chapter gives an overview of sorghum genetics relevant to phytochemicals, phytochemicals identified in sorghum grain, and their potential health benefits.

Key words

Sorghum Phytochemicals Phenolics Phenolic acids Flavonoids 3-Deoxyanthocyanins Condensed tannins Health benefits 

Notes

Acknowledgment

Disclaimer: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

References

  1. 1.
    FAO (2017) FAOSTAT, Crops production database, Yearly production. http://faostat.fao.org. Accessed Nov 2017
  2. 2.
    Waniska RD, Rooney LW (2000) Structure and chemistry of the sorghum caryopsis. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. John Wiley and Sons, Inc, New YorkGoogle Scholar
  3. 3.
    Rooney LW, Serna-Saldivar SO (2000) Sorghum. In: Kulp K, Ponte JG Jr (eds) Handbook of cereal science and technology, 2nd edn. Marcel Dekker, Inc., New YorkGoogle Scholar
  4. 4.
    Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251CrossRefGoogle Scholar
  5. 5.
    Althwab S, Carr TP, Weller CL, Dweikat IM, Schlegel V (2015) Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Res Int 77:349–359CrossRefGoogle Scholar
  6. 6.
    Cardoso LDM, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM (2017) Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 57:372–390CrossRefGoogle Scholar
  7. 7.
    Dykes L, Rooney LW (2010) Special sorghums for health foods. In: Martirrosyan DM, Abate N (eds) Functional foods for chronic diseases, vol 5. Food Science Publisher, Richardson, TXGoogle Scholar
  8. 8.
    Dykes L (2008) Flavonoid composition and antioxidant activity of pigmented sorghums of varying genotypes. Dissertation, Texas A&M UniversityGoogle Scholar
  9. 9.
    Rooney LW, Miller FR (1982) Variation in the structure and kernel characteristics of sorghum. In: Mertin JV (ed) Proceedings of the international symposium on sorghum grain quality. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), October 28–31, 1982, Patancheru, APGoogle Scholar
  10. 10.
    Dykes L, Seitz L, Rooney WL, Rooney LW (2009) Flavonoid composition of red sorghum genotypes. Food Chem 116:313–317CrossRefGoogle Scholar
  11. 11.
    Waniska RD, Poe JH, Bandyopadhyay R (1989) Effects of growth conditions on grain molding and phenols in sorghum caryopsis. J Cereal Sci 10:217–225CrossRefGoogle Scholar
  12. 12.
    Rooney LW (2005) Ten myths about tannins in sorghums. Int Sorgh Mill Newsl 46:3–5Google Scholar
  13. 13.
    Boren B, Waniska RD (1992) Sorghum seed color as an indicator of tannin content. J Appl Poult Res 1:117–121CrossRefGoogle Scholar
  14. 14.
    Earp CF, McDonough CM, Awika J, Rooney LW (2004) Testa development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci 39:303–311CrossRefGoogle Scholar
  15. 15.
    Earp CF, McDonough CM, Rooney LW (2004) Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci 39:21–27CrossRefGoogle Scholar
  16. 16.
    Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53:6813–6818PubMedCrossRefGoogle Scholar
  17. 17.
    Hahn DH, Rooney LW, Earp CF (1984) Tannins and phenols of sorghum. Cereal Foods World 29:776–779Google Scholar
  18. 18.
    Hahn DH, Faubion JM, Rooney LW (1983) Sorghum phenolic acids, their high performance liquid chromatography separation and their relation to fungal resistance. Cereal Chem 60:255–259Google Scholar
  19. 19.
    Chiremba C, Taylor JRN, Rooney LW, Beta T (2012) Phenolic acid content of sorghum and maize cultivars in varying hardness. Food Chem 134:81–88CrossRefGoogle Scholar
  20. 20.
    Svensson L, Sekwati-Monang B, Lutz DL, Schieber A, Gänzle M (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–9220PubMedCrossRefGoogle Scholar
  21. 21.
    Kang J, Price WE, Ashton J, Tapsell LC, Johnson S (2016) Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS. Food Chem 211:215–226PubMedCrossRefGoogle Scholar
  22. 22.
    Yang L, Allred KF, Geera B, Allred CD, Awika JM (2012) Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer 64:419–427PubMedCrossRefGoogle Scholar
  23. 23.
    Dykes L, Peterson GC, Rooney WL, Rooney LW (2011) Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem 128:173–179PubMedCrossRefGoogle Scholar
  24. 24.
    Dykes L, Rooney WL, Rooney LW (2013) Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J Cereal Sci 58:278–283CrossRefGoogle Scholar
  25. 25.
    Taleon V, Dykes L, Rooney WL, Rooney LW (2012) Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J Cereal Sci 56:470–475CrossRefGoogle Scholar
  26. 26.
    Taleon V, Dykes L, Rooney WL, Rooney LW (2014) Environmental effect on flavonoid concentrations and profiles of red and lemon-yellow sorghum grains. J Food Compost Anal 34:178–185CrossRefGoogle Scholar
  27. 27.
    Wu X, Prior RL (2005) Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem 53:3101–3113PubMedCrossRefGoogle Scholar
  28. 28.
    Lo S-CC, De Verdier K, Nicholson RL (1999) Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiol Mol Plant Pathol 55:263–273CrossRefGoogle Scholar
  29. 29.
    Awika JM, Rooney LW, Waniska RD (2004) Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem 52:4388–4394PubMedCrossRefGoogle Scholar
  30. 30.
    Awika JM, Rooney LW, Waniska RD (2004) Anthocyanins from black sorghum and their antioxidant properties. Food Chem 90:293–301CrossRefGoogle Scholar
  31. 31.
    Nip WK, Burns EE (1969) Pigment characterization in grain sorghum. I. Red varieties. Cereal Chem 46:490–495Google Scholar
  32. 32.
    Gujer R, Magnolato D, Self R (1986) Glucosylated flavonoids and other phenolic compounds from sorghum. Phytochemistry 25:1431–1436CrossRefGoogle Scholar
  33. 33.
    Watterson JJ, Butler LG (1983) Occurrence of an unusual leucoanthocyanidin and absence of proanthocyanidins in sorghum leaves. J Agric Food Chem 31:41–45CrossRefGoogle Scholar
  34. 34.
    Bate-Smith EC (1969) Luteoforol (3′,4,4′,5,7-pentahydroxyflavan) in Sorghum Vulgare L. Phytochemistry 8:1803–1810CrossRefGoogle Scholar
  35. 35.
    Mazza G, Brouillard R (1987) Color stability and structural transformations of cyanidin 3,5-diglucoside and four 3-deoxyanthocyanins in aqueous solutions. J Agric Food Chem 35:422–426CrossRefGoogle Scholar
  36. 36.
    Sweeny JG, Iacobucci GA (1983) Effect of substitution on the stability of 3-deoxyanthocyanidins in aqueous solutions. J Agric Food Chem 31:531–533CrossRefGoogle Scholar
  37. 37.
    Yang L, Dykes L, Awika JM (2014) Thermal stability of 3-deoxyanthocyanidin pigments. Food Chem 160:246–254PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wharton PS, Nicholson RL (2000) Temporal synthesis and radiolabelling of the sorghum 3-deoxyanthocyanidin phytoalexins and the anthocyanin, cyanidin 3-dimalonyl glucoside. New Phytol 145:457–469CrossRefGoogle Scholar
  39. 39.
    Dicko MH, Gruppen H, Traore AS, Van Berkel WJH, Voragen AGJ (2005) Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J Agric Food Chem 53:2581–2588PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Audilakshmi S, Stenhouse JW, Reddy TP, Prasad MVR (1999) Grain mould resistance and associated characters of sorghum genotypes. Euphytica 107:91–103CrossRefGoogle Scholar
  41. 41.
    Jambunathan R, Kherdekar MS, Bandyopadhyay R (1990) Flavan-4-ols concentration in mold-susceptible and mold-resistant sorghum at different stages of grain development. J Agric Food Chem 38:545–548CrossRefGoogle Scholar
  42. 42.
    Jambunathan R, Kherdekar MS, Vaidya MS (1991) Ergosterol concentration in mold-susceptible and mold-resistant sorghum at different stages of grain development and its relationship to flavan-4-ols. J Agric Food Chem 39:1866–1870CrossRefGoogle Scholar
  43. 43.
    Menkir A, Ejeta G, Butler L, Melakeberhan A (1996) Physical and chemical kernel properties associated with resistance to grain mold in sorghum. Cereal Chem 73:613–617Google Scholar
  44. 44.
    Melake-Berhan A, Butler LG, Ejeta G, Menkir A (1996) Grain mold resistance and polyphenol accumulation in sorghum. J Agric Food Chem 44:2428–2434CrossRefGoogle Scholar
  45. 45.
    Foo LY, Lu Y, Howell AB, Vorsa N (2000) A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J Nat Prod 63:1225–1228PubMedCrossRefGoogle Scholar
  46. 46.
    Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521PubMedCrossRefGoogle Scholar
  47. 47.
    Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S, Prior RL (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem 50:4852–4860PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Krueger CG, Vestling MM, Reed JD (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of heteropolyflavan-3-ols and glucosylated heteropolyflavans in sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 51:538–543PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Brandon MJ, Foo LY, Porter L, Meredith P (1982) Proanthocyanidins of barley and sorghum; composition as a function of maturity of barley ears. Phytochemistry 21:2953–2957CrossRefGoogle Scholar
  50. 50.
    Hwang KT, Kim JE, Weller CL (2005) Policosanol contents and compositions in wax-like materials extracted from selected cereals of Korean origin. Cereal Chem 82:242–245CrossRefGoogle Scholar
  51. 51.
    Leguizamón C, Weller CL, Schlegel VL, Carr TP (2009) Plant sterol and policosanol characterization of hexane extracts from grain sorghum, corn and their DDGS. J Am Oil Chem Soc 86:707–716CrossRefGoogle Scholar
  52. 52.
    Wang L, Weller CL, Schlegel VL, Carr TP, Cuppett SL (2007) Comparison of supercritical CO2 and hexane extraction of lipids from sorghum distillers grains. Eur J Lipid Sci Technol 109:567–574CrossRefGoogle Scholar
  53. 53.
    Bröhan M, Jerkovic V, Collin S (2011) Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J Agric Food Chem 59:4088–4094PubMedCrossRefGoogle Scholar
  54. 54.
    Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662PubMedCrossRefGoogle Scholar
  55. 55.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892PubMedCrossRefGoogle Scholar
  56. 56.
    Awika JM, McDonough CM, Rooney LW (2005) Decorticating sorghum to concentrate healthy phytochemicals. J Agric Food Chem 53:6230–6234PubMedCrossRefGoogle Scholar
  57. 57.
    Farrar JL, Hartle DK, Hargrove JL, Greenspan P (2008) A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: inhibition of protein glycation. Phytother Res 22:1052–1056PubMedCrossRefGoogle Scholar
  58. 58.
    Moraes EA, Marineli RDS, Lenquiste SA, Queiroz VAV, Camargo RL, Borck PC, Carneiro EM, Júnior MRM (2017) Whole sorghum flour improves glucose tolerance, insulin resistance and preserved pancreatic islets function in obesity diet-induced rats. J Funct Foods.  https://doi.org/10.1016/j.jff.2017.03.047CrossRefGoogle Scholar
  59. 59.
    Kim J-S, Hyun TK, Kim M-J (2011) The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem 124:1647–1651CrossRefGoogle Scholar
  60. 60.
    Park JH, Lee SH, Chung I-M, Park Y (2012) Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr Res Pract 6:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim J, Park Y (2012) Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr Metab 9:106.  https://doi.org/10.1186/1743-7075-9-106CrossRefGoogle Scholar
  62. 62.
    Center for Disease Control and Prevention (2017) Heart disease and stroke fact sheets. https://www.cdc.gov/dhdsp/data_statistics/fact_sheets. Accessed Dec 2017
  63. 63.
    Klopfenstein CF, Varriano-Marston E, Hoseney RC (1981) Cholesterol-lowering effect of sorghum diet in guinea pigs. Nutr Rep Int 24:621–627Google Scholar
  64. 64.
    Carr TP, Weller CL, Schlegel VL, Cuppett SL, Guderian DM Jr, Johnson KR (2005) Grain sorghum lipid extract reduces cholesterol absorption and plasma non-HDL cholesterol concentration in hamsters. J Nutr 135:2236–2240PubMedCrossRefGoogle Scholar
  65. 65.
    Kim E, Kim S, Park Y (2015) Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int J Food Sci Nutr 66:308–313PubMedCrossRefGoogle Scholar
  66. 66.
    Bralley E, Greenspan P, Hargrove JL, Hartle DK (2008) Inhibition of hyaluronidase activity by select sorghum brans. J Med Food 11:307–312PubMedCrossRefGoogle Scholar
  67. 67.
    Burdette A, Garner PL, Mayer EP, Hargrove JL, Hartle DK, Greenspan P (2010) Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J Med Food 13:879–887PubMedCrossRefGoogle Scholar
  68. 68.
    Moraes EA, Natal DIG, Queiroz VAV, Schaffert RE, Cecon PR, de Paula SO, Benjamin LA, Ribeiro SMR, Martino HSD (2012) Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res Int 49:553–559CrossRefGoogle Scholar
  69. 69.
    Ritchie L, Sturino JM, Carroll RJ, Rooney LW, Azcarate-Peril MA, Turner ND (2015) Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fiv008
  70. 70.
    Ritchie LE, Taddeo SS, Weeks BR, Carroll RJ, Dykes L, Rooney LW, Turner ND (2017) Impact of novel sorghum bran diets on DSS-induced colitis. Nutrients.  https://doi.org/10.3390/nu9040330PubMedCentralCrossRefGoogle Scholar
  71. 71.
    Van Rensburg SJ (1981) Epidemiological and dietary evidence for a specific nutritional predisposition to esophageal cancer. J Natl Cancer Inst 67:243–251PubMedPubMedCentralGoogle Scholar
  72. 72.
    Chen F, Cole P, Mi Z, Xing L-Y (1993) Corn and wheat-flour consumption and mortality from esophageal cancer in Shanxi, China. Int J Cancer 53:902–906PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Turner ND, Diaz A, Taddeo SS, Vanamala J, McDonough CM, Dykes L, Murphy ME, Carroll RJ, Rooney LW (2006) Bran from black or brown sorghum suppresses colon carcinogenesis. FASEB J 20:A599Google Scholar
  74. 74.
    Dia VP, Pangloli P, Jones L, McClure A, Patel A (2016) Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food Funct 7:3410–3420PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ryu J-M, Jang GY, Woo KS, Kim TM, Jeong HS, Kim DJ (2017) Effects of sorghum ethyl-acetate extract on PC3M prostate cancer cell tumorigenicity. J Funct Foods 37:449–459CrossRefGoogle Scholar
  76. 76.
    Awika JM, Yang L, Browning JD, Faraj A (2009) Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. Lebensm Wiss Technol 42:1041–1046CrossRefGoogle Scholar
  77. 77.
    Gomez-Cordoves C, Bartoleme B, Vieira W, Virador VM (2001) Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J Agric Food Chem 49:1620–1624PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Zhu Y, Shi Z, Yao Y, Hao Y, Ren G (2017) Antioxidant and anti-cancer activities of proanthocyanidins-rich extracts from three varieties of sorghum (Sorghum bicolor) bran. Food Agric Immunol 28:1530–1543CrossRefGoogle Scholar
  79. 79.
    Shih C-H, Siu S-O, Ng R, Wong E, Chiu LCM, Chu IK, Lo C (2007) Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J Agric Food Chem 55:254–259PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yang L, Browning JD, Awika JM (2009) Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J Agric Food Chem 57:1797–1804PubMedCrossRefGoogle Scholar
  81. 81.
    Devi PS, Kumar MS, Das SM (2011) Evaluation of antiproliferative activity of red sorghum bran anthocyanin on a human breast cancer cell line (MCF-7). Int J Breast Cancer.  https://doi.org/10.4061/2011/891481CrossRefGoogle Scholar
  82. 82.
    Suganyadevi P, Saravanakumar KM, Mohandas S (2013) The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci 92:379–382PubMedCrossRefGoogle Scholar
  83. 83.
    Woo HJ, Oh IT, Lee JY, Jun DY, Seu MC, Woo KS, Nam MH, Kim YH (2012) Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process Biochem 47:1861–1871CrossRefGoogle Scholar
  84. 84.
    Block LC, Santo ARS, De Souza MM, Scheidt C, Yunes RA, Santos MA, Monache FD, Filho VC (1998) Chemical and pharmacological examination of antinociceptive constituents of Wedelia paludosa. J Ethnopharmacol 61:85–89PubMedCrossRefGoogle Scholar
  85. 85.
    Hirano T, Higa S, Arimitsu J, Naka T, Shima Y, Ohshima S, Fujimoto M, Yamadori T, Kawase I, Tanaka T (2004) Flavonoids such as luteolin, fisetin, and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int Arch Allergy Immunol 134:135–140PubMedCrossRefGoogle Scholar
  86. 86.
    Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, Nishino H, Matsui H, Sakai T (2005) Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24:7180–7189PubMedCrossRefGoogle Scholar
  87. 87.
    Matsui J, Kiyokawa N, Takenouchi H, Taguchi T, Suzuki K, Shiozawa Y, Saito M, Tang W-R, Katagiri YU, Okita H, Fujimoto J (2005) Dietary bioflavonoids induce apoptosis in human leukemia cells. Leuk Res 29:573–581PubMedCrossRefGoogle Scholar
  88. 88.
    Cherng J-M, Shieh D-E, Chiang W, Chang M-Y, Chiang L-C (2007) Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci Biotechnol Biochem 71:1500–1504PubMedCrossRefGoogle Scholar
  89. 89.
    Ziyan L, Yongmei Z, Nan Z, Ning T, Baolin L (2007) Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med 73:221–226PubMedCrossRefGoogle Scholar
  90. 90.
    Joussen AM, Rohrschneider K, Reichling J, Kirchhof B, Kruse FE (2000) Treatment of corneal neovascularization with dietary isoflavonoids and flavonoids. Exp Eye Res 71:483–487PubMedCrossRefGoogle Scholar
  91. 91.
    Xu YC, Leung SWS, Yeung DKY, Hu LH, Chen GH, Che CM, Man RYK (2007) Structure-activity relationships of flavonoids for vascular relaxation in porcine coronary artery. Phytochemistry 68:1179–1188PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang XF, Hung TM, Phuong PT, Ngoc TM, Min B-S, Song K-S, Seong YH, Bae K (2006) Anti-inflammatory activity of flavonoids from Populus davidiana. Arch Pharm Res 29:1102–1108PubMedCrossRefGoogle Scholar
  93. 93.
    Aviado DM, Bacalzo LV Jr, Belej MA (1974) Prevention of acute pulmonary insufficiency by eriodictyol. J Pharmacol Exp Ther 189:157–166PubMedGoogle Scholar
  94. 94.
    Lee E-R, Kim J-H, Kang Y-J, Cho S-G (2007) The anti-apoptotic and anti-oxidant effect of eriodictyol on UV-induced apoptosis in keratinocytes. Biol Pharm Bull 30:32–37PubMedCrossRefGoogle Scholar
  95. 95.
    Hanneken A, Lin F-F, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47:3164–3177PubMedCrossRefGoogle Scholar
  96. 96.
    Borradaile NM, Carroll KK, Kurowska EM (1999) Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperitin and naringenin. Lipids 34:591–598PubMedCrossRefGoogle Scholar
  97. 97.
    Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperitin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42:725–734PubMedGoogle Scholar
  98. 98.
    Martin MJ, Motilva V, Alarcón de la Lastra C (1993) Quercetin and naringenin: Effects on ulcer formation and gastric secretion in rats. Phytother Res 7:150–153CrossRefGoogle Scholar
  99. 99.
    Lin B-Q, Li P-B, Wang Y-G, Peng W, Wu Z, Su W-W, Ji H (2008) The expectorant activity of naringenin. Pulm Pharmacol Ther 21:259–263PubMedCrossRefGoogle Scholar
  100. 100.
    Heo HJ, Kim D-O, Shin SC, Kim MJ, Kim BG, Shin D-H (2004) Effect of antioxidant flavanone, naringenin, from Citrus junos on neuroprotection. J Agric Food Chem 52:1520–1525PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cereal Crops Research Unit, Red River Valley Agricultural Research CenterUSDA-ARSFargoUSA

Personalised recommendations