Sorghum pp 87-108 | Cite as

Assaying Sorghum Nutritional Quality

  • Kwaku G. DuoduEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1931)


Sorghum (Sorghum bicolor L. Moench) is a major drought-tolerant cereal crop grown mainly in the semi-arid regions of the world. It is an important basic food cereal in these regions which encompasses most of the developing world in many parts of Africa and Asia. Therefore, sorghum is an important source of nutrients for millions of inhabitants in these regions. In light of this, the nutritional quality of sorghum and how this is assessed is of major research interest. Various assays have been used to determine the contents of macronutrients and micronutrients in sorghum including how digestible and bioaccessible these are. A wide range of indices of sorghum nutritional quality has been generated. Advances in analytical instrumentation have contributed significantly to enhancing the capacity of analysts and researchers to broaden the scope of assays for sorghum nutritional quality and also to improve their accuracy.

Key words

Sorghum Nutritional quality Starch Protein Digestibility Dietary fiber Vitamins Minerals Bioaccessibility 


  1. 1.
    FAOSTAT (2018) Production: crops. Accessed Feb 2018
  2. 2.
    Akingbala JO, Rooney LW, Faubion JM (1981) Physical, chemical and sensory evaluation of ogi from sorghum of differing kernel characteristics. J Food Sci 46:1532–1536CrossRefGoogle Scholar
  3. 3.
    Muindi PJ, Thomke S, Ekman R (1981) Effect of Magadi soda treatment on the tannin content and in-vitro nutritive value of grain sorghums. J Sci Food Agr 32:25–34CrossRefGoogle Scholar
  4. 4.
    Zhang G, Hamaker BR (1998) Low α-amylase starch digestibility of cooked sorghum flours and the effect of protein. Cereal Chem 75:710–713CrossRefGoogle Scholar
  5. 5.
    Benmoussa M, Suhendra B, Aboubacar A, Hamaker BR (2006) Distinctive sorghum starch granule morphologies appear to improve raw starch digestibility. Starch/Stärke 58:92–99CrossRefGoogle Scholar
  6. 6.
    Tawaba JCB, Tshiala H, Kibal I, Buetusiwa T, de Dieu Minengu J (2016) Effects of phenolic compounds on the hydrolysis of red sorghum starch by extracted red sorghum malt α- and β-amylases. Starch/Stärke 67:854–859CrossRefGoogle Scholar
  7. 7.
    Elkhalifa AEO, Chandrashekar A, Mohamed BE, El Tinay AH (1999) Effect of reducing agents on the in vitro protein and starch digestibilities of cooked sorghum. Food Chem 66:323–326CrossRefGoogle Scholar
  8. 8.
    Elkhalifa AEO, Schiffler B, Bernhard R (2004) Effect of fermentation on the starch digestibility, resistant starch and some physicochemical properties of sorghum flour. Nahrung/Food 48:91–94PubMedCrossRefGoogle Scholar
  9. 9.
    Ezeogu LI, Duodu KG, Taylor JRN (2005) Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J Cereal Sci 42:33–44CrossRefGoogle Scholar
  10. 10.
    Aarathi A, Urooj A, Puttaraj S (2003) In vitro starch digestibility and nutritionally important starch fractions in cereals and their mixtures. Starch/Stärke 55:94–99CrossRefGoogle Scholar
  11. 11.
    Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:223–250Google Scholar
  12. 12.
    McCleary BV, Gibson TS, Solah V, Mugford DC (1994) Total starch measurement in cereal products: Interlaboratory evaluation of a rapid enzymic test procedure. Cereal Chem 71(5):501–505Google Scholar
  13. 13.
    Englyst HN, Veenstra J, Hudson GJ (1996) Measurement of rapidly available glucose (RAG) in plant foods: a potential in vitro predictor of the glycemic response. Br J Nutr 75:327–337PubMedCrossRefGoogle Scholar
  14. 14.
    Giuberti G, Gallo A, Cerioli C, Masoero F (2012) In vitro starch digestion and predicted glycemic index of cereal grains commonly utilized in pig nutrition. Anim Feed Sci Tech 174:163–173CrossRefGoogle Scholar
  15. 15.
    Mkandawire NL, Kaufman RC, Bean SR, Weller CL, Jackson DS, Rose DJ (2013) Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours. J Agric Food Chem 61:4448–4454PubMedCrossRefGoogle Scholar
  16. 16.
    Mkandawire NL, Weier SA, Weller CL, Jackson DS, Rose DJ (2015) Composition, in vitro digestibility, and sensory evaluation of extruded whole grain sorghum breakfast cereals. LWT–Food Sci Technol 62:662–667CrossRefGoogle Scholar
  17. 17.
    Englyst KN, Hudson GJ, Englyst HN (2000) Starch analysis in food. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, New YorkGoogle Scholar
  18. 18.
    Amoako DB, Awika JM (2016) Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chem 208:10–17PubMedCrossRefGoogle Scholar
  19. 19.
    Al-Rabadi GJS, Gilbert RG, Gidley MJ (2009) Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J Cereal Sci 50:198–204CrossRefGoogle Scholar
  20. 20.
    Al-Rabadi GJ, Torley PJ, Williams BA, Bryden WL, Gidley MJ (2012) Particle size heterogeneity in milled barley and sorghum grains: effects on physico-chemical properties and starch digestibility. J Cereal Sci 56:396–403CrossRefGoogle Scholar
  21. 21.
    Pranotoa Y, Anggrahini S, Efendi Z (2013) Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci 2:46–52CrossRefGoogle Scholar
  22. 22.
    Goñi I, Garcia-Alonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17:427–437CrossRefGoogle Scholar
  23. 23.
    Lemlioglu-Austin D, Turner ND, McDonough CM, Rooney LW (2012) Effects of brans from specialty sorghum varieties on in vitro starch digestibility of soft and hard sorghum endosperm porridges. Cereal Chem 89:190–197CrossRefGoogle Scholar
  24. 24.
    Lemlioglu-Austin D, Turner ND, McDonough CM, Rooney LW (2012) Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, estimated glycemic index (EGI), and resistant starch (RS) contents of porridges. Molecules 17:11124–11138PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Susanna S, Prabhasankar P (2013) A study on development of gluten free pasta and its biochemical and immunological validation. LWT–Food Sci Technol 50:613–621CrossRefGoogle Scholar
  26. 26.
    Wolter A, Hager AS, Zannini E, Arendt EK (2013) In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J Cereal Sci 58:431–436CrossRefGoogle Scholar
  27. 27.
    Wolter A, Hager AS, Zannini E, Arendt EK (2014) Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food and Function 5:564–572PubMedCrossRefGoogle Scholar
  28. 28.
    Saravanabavan SN, Shivanna MM, Bhattacharya S (2013) Effect of popping on sorghum starch digestibility and predicted glycemic index. J Food Sci Technol 50:387–392CrossRefGoogle Scholar
  29. 29.
    Souilah R, Djabali D, Belhadi B, Mokrane H, Boudries N, Nadjemi B (2014) In vitro starch digestion in sorghum flour from Algerian cultivars. Food Sci Nutr 2(3):251–259PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu H, Fan F, Cao R, Blanchard C, Wang M (2016) Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure. Int J Biol Macromol 92:753–760PubMedCrossRefGoogle Scholar
  31. 31.
    Liu H, Wang L, Shen M, Guo X, lv M, Wang M (2016) Changes in physicochemical properties and in vitro digestibility of tartary buckwheat and sorghum starches induced by annealing. Starch/Stärke 68:709–718CrossRefGoogle Scholar
  32. 32.
    McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85:665–675PubMedGoogle Scholar
  33. 33.
    Elkonin LA, Italianskaya JV, Fadeeva IY, Bychkova VV, Kozhemyakin VV (2013) In vitro protein digestibility in grain sorghum: effect of genotype and interaction with starch digestibility. Euphytica 193:327–337CrossRefGoogle Scholar
  34. 34.
    Mitchell GB (1999) Methods of starch analysis. Starch/Stärke 42:131–134CrossRefGoogle Scholar
  35. 35.
    Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826:109–134PubMedCrossRefGoogle Scholar
  36. 36.
    Rigas PG (2012) Review: liquid chromatography–post column derivatization for amino acid analysis: strategies, instrumentation and applications. Instrum Sci Technol 40:161–193CrossRefGoogle Scholar
  37. 37.
    Rigas PG (2013) Post-column labeling techniques in amino acid analysis by liquid chromatography. Anal Bioanal Chem 405:7957–7992PubMedCrossRefGoogle Scholar
  38. 38.
    Neucere NJ, Sumrell G (1979) Protein fractions from five varieties of grain sorghum: amino acid composition and solubility properties. J Agric Food Chem 27:809–812CrossRefGoogle Scholar
  39. 39.
    Khalil JK, Sawaya WN, Safi WJ, Al-Mohammad HM (1984) Chemical composition and nutritional quality of sorghum flour and bread. Plant Food Hum Nutr 34:141–150CrossRefGoogle Scholar
  40. 40.
    Ejeta G, Hassen MM, Mertz ET (1987) In vitro digestibility and amino acid composition of pearl millet (Pennisetum typhoides) and other cereals. Proc Natl Acad Sci U S A 84:6016–6019PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ahmed ZS, Abd El-Moneim GM, Yassen AAE (1996) Comparative studies on protein fractions, and amino acid composition from sorghum and pearl millet. Nahrung 40:305–309CrossRefGoogle Scholar
  42. 42.
    Sanni AI, Asiedu M, Ayernor GS (2001) Influence of processing conditions on the nutritive value of Ogi-baba, a Nigerian fermented sorghum gruel. Plant Food Hum Nutr 56:217–223CrossRefGoogle Scholar
  43. 43.
    Ebadi MR, Pourreza J, Jamalian J, Edriss MA, Samie AH, Mirhadi SA (2005) Amino acid content and availability in low, medium and high tannin sorghum grain for poultry. Int J Poult Sci 4:27–31CrossRefGoogle Scholar
  44. 44.
    Agu HO, Jideani IA, Yusuf IZ (2007) Nutrient and sensory properties of dambu produced from different cereal grains. Nutr Food Sci 37:272–281CrossRefGoogle Scholar
  45. 45.
    Mabelebele M, Siwela M, Gous RM, Iji PA (2015) Chemical composition and nutritive value of south African sorghum varieties as feed for broiler chickens. S Afr J Anim Sci 45:206–213CrossRefGoogle Scholar
  46. 46.
    Kaiser FE, Gehrke CW, Zumwalt RW, Kuo KC (1974) Amino acid analysis: hydrolysis, ion-exchange cleanup, derivatization and quantitation by gas-liquid chromatography. J Chromatogr 94:113–133PubMedCrossRefGoogle Scholar
  47. 47.
    White JA, Hart RJ, Fry JC (1986) An evaluation of the waters Pico-tag system for the amino acid analysis of food materials. J Autom Chem 8:170–177CrossRefGoogle Scholar
  48. 48.
    Serna-Saldivar SO, Knabe DA, Rooney LW, Tanksley TD Jr, Sproule AM (1988) Nutritional value of sorghum and maize tortillas. J Cereal Sci 7:83–94CrossRefGoogle Scholar
  49. 49.
    Axtell JD, Kirles AW, Hassen MM, Mason ND, Mertz ET, Munck L (1981) Digestibility of sorghum proteins. Proc Natl Acad Sci U S A 78:1333–1335PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mertz ET, Hassen MM, Cairns-Whittern C, Kirleis AW, Tu L, Axtell J (1984) Pepsin digestibility of proteins in sorghum and other major cereals. Proc Natl Acad Sci U S A 81:1–2PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hamaker BR, Kirleis AW, Mertz ET, Axtell JD (1986) Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. J Agric Food Chem 34:647–649CrossRefGoogle Scholar
  52. 52.
    Hamaker BR, Kirleis AW, Butler LG, Axtell JD, Mertz ET (1987) Improving the in vitro protein digestibility of sorghum with reducing agents. Proc Natl Acad Sci U S A 84:626–628PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hassan IAG, El Tinay AH (1995) Effect of fermentation on tannin content and in-vitro protein and starch digestibilities of two sorghum cultivars. Food Chem 53:149–151CrossRefGoogle Scholar
  54. 54.
    Oria MP, Hamaker BR, Shull JM (1995) Resistance of sorghum α-, β- and γ-kafirins to pepsin digestion. J Agric Food Chem 43:2148–2153CrossRefGoogle Scholar
  55. 55.
    Parker ML, Grant A, Rigby AN, Belton PS, Taylor JRN (1999) Effects of popping on the endosperm cell walls of sorghum and maize. J Cereal Sci 30:209–216CrossRefGoogle Scholar
  56. 56.
    Hicks C, Bean SR, Lookhart GL, Pedersen JF, Kofoid KD, Tuinstra MR (2001) Genetic analysis of kafirins and their phenotypic correlations with feed quality traits, in vitro digestibility, and seed weight in grain sorghum. Cereal Chem 78:412–416CrossRefGoogle Scholar
  57. 57.
    Duodu KG, Nunes A, Delgadillo I, Parker ML, Mills ENC, Belton PS, Taylor JRN (2002) Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J Cereal Sci 35:161–174CrossRefGoogle Scholar
  58. 58.
    Nunes A, Correia I, Barros A, Delgadillo I (2004) Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples. J Agric Food Chem 52:2052–2058PubMedCrossRefGoogle Scholar
  59. 59.
    Correia I, Nunes A, Saraiva JA, Barros AS, Delgadillo I (2011) High pressure treatments largely avoid/revert decrease of cooked sorghum protein digestibility when applied before/after cooking. LWT–Food Sci Technol 44:1245–1249CrossRefGoogle Scholar
  60. 60.
    Da Silva LS, Taylor J, Taylor JRN (2011) Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion. J Agric Food Chem 59:9265–9270PubMedCrossRefGoogle Scholar
  61. 61.
    Licata R, Chu J, Wang S, Coorey R, James A, Zhao Y, Johnson S (2014) Determination of formulation and processing factors affecting slowly digestible starch, protein digestibility and antioxidant capacity of extruded sorghum–maize composite flour. Int J Food Sci Technol 49:1408–1419CrossRefGoogle Scholar
  62. 62.
    Elhassan MSM, Emmambux MN, Hays DB, Peterson GC, Taylor JRN (2015) Novel biofortified sorghum lines with combined waxy (high amylopectin) starch and high protein digestibility traits: effects on endosperm and flour properties. J Cereal Sci 65:132–139CrossRefGoogle Scholar
  63. 63.
    Thin T, Myat L, Ryu GH (2016) The effects of CO2 injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals. Prev Nutr Food Sci 21:271–280PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Aboubacar A, Axtell JD, Huang CP, Hamaker BR (2001) A rapid protein digestibility assay for identifying highly digestible sorghum lines. Cereal Chem 78:160–165CrossRefGoogle Scholar
  65. 65.
    Wong JH, Marx DB, Wilson JD, Buchanan BB, Lemaux PG, Pedersen JF (2010) Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Sci 179:598–611CrossRefGoogle Scholar
  66. 66.
    Jood S, Kapoor AC (1992) Effect of storage and insect infestation on protein and starch digestibility of cereal grains. Food Chem 44:209–212CrossRefGoogle Scholar
  67. 67.
    Elmaki HB, Babiker EE, El Tinay AH (1999) Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem 64:331–336CrossRefGoogle Scholar
  68. 68.
    FAO/WHO Expert Consultation (1990) Protein quality evaluation. Food and Agricultural Organization of the United Nations, FAO Food and Nutrition Paper 51, RomeGoogle Scholar
  69. 69.
    Schaafsma G (2000) The protein digestibility-corrected amino acid score. J Nutr 130:1865S–1867SPubMedCrossRefGoogle Scholar
  70. 70.
    Schaafsma G (2012) Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br J Nutr 108:S333–S336PubMedCrossRefGoogle Scholar
  71. 71.
    FAO (Food and Agriculture Organisation) (2013) Dietary protein quality evaluation in human nutrition, Report of an FAO expert consultation. FAO food and nutrition paper no. 92. FAO, Rome (Italy)Google Scholar
  72. 72.
    Rutherford SM, Fanning AC, Miller BJ, Moughan PJ (2015) Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J Nutr 145:372–379CrossRefGoogle Scholar
  73. 73.
    Henley EC, Taylor JRN, Obukosia SD (2010) The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum. Adv Food Nutr Res 60:21–52PubMedCrossRefGoogle Scholar
  74. 74.
    Mokrane H, Amoura H, Belhaneche-Bensemra N, Courtin CM, Delcour JA, Nadjemi B (2010) Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chem 121:719–723CrossRefGoogle Scholar
  75. 75.
    Anyango JO, de Kock HL, Taylor JRN (2011) Impact of cowpea addition on the protein digestibility corrected amino acid score and other protein quality parameters of traditional African foods made from non-tannin and tannin sorghum. Food Chem 124:775–780CrossRefGoogle Scholar
  76. 76.
    AwadElkareem AM, Taylor JRN (2011) Protein quality and physical characteristics of kisra (fermented sorghum pancake-like flatbread) made from tannin and non-tannin sorghum cultivars. Cereal Chem 88:344–348CrossRefGoogle Scholar
  77. 77.
    Vilakati N, MacIntyre U, Oelofse A, Taylor JRN (2015) Influence of micronization (infrared treatment) on the protein and functional quality of a ready-to-eat sorghum-cowpea African porridge for young child-feeding. LWT–Food Sci Technol 63:1191–1198CrossRefGoogle Scholar
  78. 78.
    Kim JS, Kim KJ, Ma WCJ, Chung HY (2007) Development of a method to quantify lysine in small amount of rice grain. Korean J Sanitation 22:75–84Google Scholar
  79. 79.
    Lupton JR, Betteridge VA, Pijls LTJ (2009) Codex final definition of dietary fibre: issues of implementation. Qual Assur Saf Crop Food 1(4):206–212CrossRefGoogle Scholar
  80. 80.
    Mann JI, Cummings JH (2009) Possible implications for health of the different definitions of dietary fibre. Nutr Metab Cardiovasc Dis 19:226–229PubMedCrossRefGoogle Scholar
  81. 81.
    McCleary BV (2010) Development of an integrated total dietary fibre method consistent with the codex Alimentarius definition. Cereal Foods World 55:24–28Google Scholar
  82. 82.
    Codex Alimentarius Commission (2009) Report of the 30th Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses, Cape Town, South Africa, 3–7 November 2008. Assessed 4 Feb 2018
  83. 83.
    Dovi KAP, Chiremba C, Taylor JRN, De Kock HL (2018) Rapid sensory profiling and hedonic rating of whole grain sorghum-cowpea composite biscuits by low income consumers. J Sci Food Agric 98:905–913PubMedCrossRefGoogle Scholar
  84. 84.
    Bach Knudsen KE, Munck L (1988) Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugali. Br J Nutr 59:31–47PubMedCrossRefGoogle Scholar
  85. 85.
    Barikmo I, Ouattara F, Oshaug A (2004) Protein, carbohydrate and fibre in cereals from Mali—how to fit the results in a food composition table and database. J Food Comp Anal 17:291–300CrossRefGoogle Scholar
  86. 86.
    Amalraj A, Pius A (2015) Influence of oxalate, phytate, tannin, dietary fibre, and cooking on calcium bioavailability of commonly consumed cereals and millets in India. Cereal Chem 92:389–394CrossRefGoogle Scholar
  87. 87.
    Moraes EA, Da Silva Marineli R, Lenquiste SA, Steel CJ, De Menezes CB, Queiroz VAV, Júnior MRM (2015) Sorghum flour fractions: correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem 180:116–123PubMedCrossRefGoogle Scholar
  88. 88.
    Rao BD, Kulkarni DB, Kavitha C (2018) Study on evaluation of starch, dietary fibre and mineral composition of cookies developed from 12 sorghum cultivars. Food Chem 238:82–86PubMedCrossRefGoogle Scholar
  89. 89.
    Megazyme (2017) Total dietary fibre assay procedure K-TDFR-100A/K-TDFR-200A. Assessed 4 Feb 2018
  90. 90.
    AOAC (2000) Official methods of analysis of AOAC International, 17th ed. Official method 970.64 or 45.1.014. AOAC International, Gaithersburg, MDGoogle Scholar
  91. 91.
    Elemo GN, Elemo BO, Okafor JNC (2011) Preparation and nutritional composition of a weaning food formulated from germinated sorghum (Sorghum bicolor) and steamed cooked cowpea (Vigna unguiculata Walp). Am J Food Technol 6:413–421CrossRefGoogle Scholar
  92. 92.
    AACC (2004) American Association of Cereal Chemists approved methods, 10th ed. Methods 86–05, 86–06, 86–31, 86–40, 86–47, 86–51, 86–72. AACC International, St Paul, MNGoogle Scholar
  93. 93.
    Fernandez MGS, Kapran I, Souley S, Abdou M, Maiga IH, Acharya CB, Hamblin MT, Kresovich S (2009) Collection and characterization of yellow endosperm sorghums from West Africa for biofortification. Genet Resour Crop Ev 56:991–1000CrossRefGoogle Scholar
  94. 94.
    Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin a biofortified sorghum. J Agric Food Chem 61:5764–5771CrossRefGoogle Scholar
  95. 95.
    Cardoso LDL, Montini TA, Pinheiro SS, Pinheiro-Sant’Ana HM, Martino HSD, Moreira AVB (2014) Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chem 152:210–217CrossRefGoogle Scholar
  96. 96.
    Cardoso LDM, Pinheiro SS, Da Silva LL, De Menezes CB, De Carvalho CWP, Tardin FD, Queiroz VAV, Martino HSD, Pinheiro-Sant’Ana HM (2015) Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): diversity and stability to the heat treatment. Food Chem 172:900–908CrossRefGoogle Scholar
  97. 97.
    Anunciação PC, Cardoso LDM, Gomes JVP, Lucia CMD, Carvalho CWP, Galdeano MC, Queiroz VAV, Alfenas RDCG, Martino HSD, Pinheiro-Sant’Ana HM (2017) Comparing sorghum and wheat whole grain breakfast cereals: sensorial acceptance and bioactive compound content. Food Chem 221:984–989PubMedCrossRefGoogle Scholar
  98. 98.
    Pinheiro-Sant’Ana HM, Guinazi M, da Silva Oliveira D, Della Lucia CM, de Lazzari Reis B, Brandão SCC (2011) Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J Chromatogr A 1218:8496–8502PubMedCrossRefGoogle Scholar
  99. 99.
    Hegedus M, Pedersen B, Eggum BO (1985) The influence of milling on the nutritive value of flour from cereal grains. 7. Vitamins and tryptophan. Plant Food Hum Nutr 35:175–180CrossRefGoogle Scholar
  100. 100.
    Mahgoub SEO, Ahmed BM, Ahmed MMO, El Agib ENAA (1999) Effect of traditional Sudanese processing of kisra bread and hulu-mur drink on their thiamine, riboflavin and mineral contents. Food Chem 67:129–133CrossRefGoogle Scholar
  101. 101.
    Duodu KG, Minnaar A, Taylor JRN (1999) Effect of cooking and irradiation on the labile vitamins and antinutrient content of a traditional African sorghum porridge and spinach relish. Food Chem 66:21–27CrossRefGoogle Scholar
  102. 102.
    Gautam S, Platel K, Srinivasan K (2010) Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. J Agric Food Chem 58:8426–8429PubMedCrossRefGoogle Scholar
  103. 103.
    Lestienne I, Icard-Vernière C, Mouquet C, Picq C, Trèche S (2005) Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem 89:421–425CrossRefGoogle Scholar
  104. 104.
    Shegro A, Labuschagne MT, Shargie NG, Van Biljon A (2013) Multivariate analysis of nutritional diversity in sorghum landrace accessions from Western Ethiopia. J Biol Sci 13(2):67–74CrossRefGoogle Scholar
  105. 105.
    Gerrano AS, Labuschagne MT, Van Biljon A, Shargie NG (2016) Quantification of mineral composition and total protein content in sorghum [Sorghum bicolor (L.) Moench] genotypes. Cereal Res Commun 44(2):272–285CrossRefGoogle Scholar
  106. 106.
    Hassan AB, Osman GAM, Rushdi MAH, Eltayeb MM, Diab EE (2009) Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and sorghum (Sorghum bicolor) grains. Pakistan J Nutr 8:167–171CrossRefGoogle Scholar
  107. 107.
    Towo E, Matuscheck E, Svanberg U (2006) Fermentation and enzyme treatment of tannin sorghum gruels: effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem 94:369–376CrossRefGoogle Scholar
  108. 108.
    Wu G, Johnson SK, Bornman JF, Bennett SJ, Singh V, Simic A, Fang Z (2016) Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. PLoS One 11(2):e0148712. Scholar
  109. 109.
    Wu G, Ashton J, Simic A, Fang Z, Johnson SK (2018) Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Res Int 103:509–514PubMedCrossRefGoogle Scholar
  110. 110.
    Idris WH, Rahaman SMA, ElMaki HB, Babiker EE, El Tinay AH (2007) Effect of malt pretreatment on HCl extractability of calcium, phosphorus and iron of sorghum (Sorghum bicolor) cultivars. Int J Food Sci Technol 42:194–199CrossRefGoogle Scholar
  111. 111.
    Badigannavar A, Girish G, Ramachandran V, Ganapathi TR (2016) Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop Journal 4:61–67CrossRefGoogle Scholar
  112. 112.
    Bandara YMAY, Tesso TT, Bean SR, Dowell FE, Little CR (2017) Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain. Plant Dis 101:2059–2065CrossRefGoogle Scholar
  113. 113.
    Kumari M, Platel K (2017) Effect of sulfur-containing spices on the bioaccessibility of trace minerals from selected cereals and pulses. J Sci Food Agric 97:2842–2848PubMedCrossRefGoogle Scholar
  114. 114.
    Asikin Y, Wada K, Imai Y, Kawamoto Y, Mizu M, Mutsuura M, Takahashi M (2017) Compositions, taste characteristics, volatile profiles, and antioxidant activities of sweet sorghum (Sorghum bicolor L.) and sugarcane (Saccharum officinarum L.) syrups. J Food Meas Charact. Scholar
  115. 115.
    Yang L, Yan Q, Cao Y, Zhang H (2012) Determination of mineral elements of some coarse grains by microwave digestion with inductively coupled plasma atomic emission spectrometry. E-Journal of Chem 9(1):93–98CrossRefGoogle Scholar
  116. 116.
    Proietti I, Mantovani A, Mouquet-Rivier C, Guyot JP (2013) Modulation of chelating factors, trace minerals and their estimated bioavailability in Italian and African sorghum (Sorghum bicolor (L.) Moench) porridges. Int J Food Sci Technol 48:1526–1532CrossRefGoogle Scholar
  117. 117.
    Ndimba R, Cloete K, Mehlo L, Kossmann J, Mtshali C, Pineda-Vargas C (2017) Using ICP and micro-PIXE to investigate possible differences in the mineral composition of genetically modified versus wild-type sorghum grain. Nucl Instr Meth B 404:121–124CrossRefGoogle Scholar
  118. 118.
    Oboh G, Amusan TV (2009) Nutritive value and antioxidant properties of cereal gruels produced from fermented maize and sorghum. Food Biotechnol 23:17–31CrossRefGoogle Scholar
  119. 119.
    Hemalatha S, Platel K, Srinivasan K (2007) Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chem 102:1328–1336CrossRefGoogle Scholar
  120. 120.
    Llopart EE, Drago SR (2016) Physicochemical properties of sorghum and technological aptitude for popping. Nutritional changes after popping. LWT–Food Sci Technol 71:316–322CrossRefGoogle Scholar
  121. 121.
    Okoth JK, Ochola SA, Gikonyo NK, Makokha A (2017) Development of a nutrient-dense complementary food using amaranth-sorghum grains. Food Sci Nutr 5(1):86–93PubMedCrossRefGoogle Scholar
  122. 122.
    Ragaee S, Abdel-Aal EM, Noaman M (2006) Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem 98:32–38CrossRefGoogle Scholar
  123. 123.
    Hager AS, Wolter A, Jacob F, Zannini E, Arendt EK (2012) Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56:239–247CrossRefGoogle Scholar
  124. 124.
    Kruger J, Taylor JRN, Du X, De Moura FF, Lönnerdal B, Oelofse A (2013) Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model. Food Chem 141:1019–1025PubMedCrossRefGoogle Scholar
  125. 125.
    Paiva CL, Queiroz VAV, Simeone MLF, Schaffert RE, De Oliveira AC, Da Silva CS (2017) Mineral content of sorghum genotypes and the influence of water stress. Food Chem 214:400–405PubMedCrossRefGoogle Scholar
  126. 126.
    Heaney RP (2001) Factors influencing the measurement of bioavailability, taking calcium as a model. J Nutr 131:1344–1348CrossRefGoogle Scholar
  127. 127.
    Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frigola A (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf 13:155–171CrossRefGoogle Scholar
  128. 128.
    Chauhan BM, Mahjan L (1988) Effect of natural fermentation on the extractability of minerals from pearl millet flour. J Food Sci 53:1576–1577CrossRefGoogle Scholar
  129. 129.
    Luten J, Crews H, Flynn A, Dael PV, Kastenmayer P, Hurrel R, Deelstra H, Shen LH, Fairweathertait S, Hickson K, Farre R, Schlemmer U, Frohlich W (1996) Inter-laboratory trial on the determination of the in vitro iron dialysability from food. J Sci Food Agric 72:415–424CrossRefGoogle Scholar
  130. 130.
    Drago SR, Binaghi MJ, Valencia ME (2005) Effect of gastric digestion pH on iron, zinc and calcium availability from preterm and term starting infant formulas. J Food Sci 70:107–112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-beingUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations