Advertisement

Sorghum pp 61-73 | Cite as

Development of a Pedigreed Sorghum Mutant Library

  • Junping Chen
  • Guihua Zou
  • Zhanguo XinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1931)

Abstract

Induced mutagenesis is a powerful approach to generate variations for elucidation of gene function and to create new traits for breeding. Here, we described a procedure to develop a pedigreed mutant library through chemical mutagenesis with ethylmethane sulfonate (EMS) treated seeds in sorghum and discussed its potential to generate new traits for sorghum improvement. Unlike random mutagenesis, a pedigreed mutant library, once properly established, can serve as a powerful resource to isolate and recover mutations of both agronomical and biological importance. With the development of affordable and high-throughput next-generation sequencing technologies, identification of causal mutations from a mutant library with a uniform genetic background becomes increasingly efficient and cost-effective. Fast causal gene discovery from mutant libraries combined with precise genome editing techniques will accelerate incorporation of new traits and revolutionize crop breeding.

Key words

Sorghum bicolor Sorghum Ethylmethane sulfonate EMS Mutagenesis Mutant library. 

Notes

Acknowledgment

We thank the United Sorghum Checkoff for funding and Lan Liu-Gitz for technical support.

Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

USDA is an equal opportunity provider and employer.

References

  1. 1.
    Quinby JR, Karper RE (1942) Inheritance of mature plant characters in sorghum. Induced by Radiation J Hered 33:323–327Google Scholar
  2. 2.
    Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232CrossRefGoogle Scholar
  3. 3.
    Sree Ramulu K (1970) Induced systematic mutations in sorghum. Mutat Res Fundam Mol Mech Mutagen 10:77–80CrossRefGoogle Scholar
  4. 4.
    Sree Ramulu K (1970) Sensitivity and induction of mutations in sorghum. Mutat Res Fundam Mol Mech Mutagen 10:197–206CrossRefGoogle Scholar
  5. 5.
    Sree Ramulu K, Sree Rangasamy SR (1972) An estimation of the number of initials in grain sorghum using mutagenic treatments. Radiat Bot 12:37–43CrossRefGoogle Scholar
  6. 6.
    Quinby JR (1975) The genetics of sorghum improvement. J Hered 66:56–62CrossRefGoogle Scholar
  7. 7.
    Ejeta G, Axtell J (1985) Mutant gene in sorghum causing leaf "reddening" and increased protein concentration in the grain. J Hered 76:301–302CrossRefGoogle Scholar
  8. 8.
    Oria MP, Hamaker BR, Axtell JD, Huang CP (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci U S A 97:5065–5070CrossRefGoogle Scholar
  9. 9.
    Singh R, Axtell JD (1973) High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci 13:535–539CrossRefGoogle Scholar
  10. 10.
    Porter KS, Anxtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208CrossRefGoogle Scholar
  11. 11.
    Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103CrossRefGoogle Scholar
  12. 12.
    Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefGoogle Scholar
  13. 13.
    Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J et al (2018) Efficient identification of causal mutations through sequencing of bulked f2 from two allelic bloomless mutants. Front Plant Sci 8:2267CrossRefGoogle Scholar
  14. 14.
    Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 2008:362451CrossRefGoogle Scholar
  15. 15.
    Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefGoogle Scholar
  16. 16.
    Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66CrossRefGoogle Scholar
  17. 17.
    Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195:309–318CrossRefGoogle Scholar
  18. 18.
    Rizal G, Karki S, Alcasid M, Montecillo F, Acebron K, Larazo N et al (2014) Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci 54:520CrossRefGoogle Scholar
  19. 19.
    Jiao Y, Burke JJ, Chopra R, Burow G, Chen J, Wang B et al (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562PubMedPubMedCentralGoogle Scholar
  20. 20.
    Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377–1395CrossRefGoogle Scholar
  21. 21.
    Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J et al (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1(6):e1400218CrossRefGoogle Scholar
  22. 22.
    Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458CrossRefGoogle Scholar
  23. 23.
    Xin Z, Gitz D, Burow G, Hayes C, Burke JJ (2015) Registration of two allelic erect leaf mutants of sorghum. J Plant Regist 9:254–257CrossRefGoogle Scholar
  24. 24.
    Xin Z, Burow GB, Burke JJ 2014 Multi-seed mutant of sorghum for increasing grain yield. US Patent US 2014/0068798 Al, 6 Mar 2014Google Scholar
  25. 25.
    Burow G, Xin Z, Hayes C, Burke J (2014) Characterization of a multiseeded mutant of sorghum for increasing grain yield. Crop Sci 54:2030–2037CrossRefGoogle Scholar
  26. 26.
    Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, Regulski M et al (2018) MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun 9:822.  https://doi.org/10.1038/s41467-018-03238-4CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-Central United States. Crop Sci 39:1622–1630CrossRefGoogle Scholar
  28. 28.
    Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefGoogle Scholar
  29. 29.
    Assefa Y, Staggenborg SA (2011) Phenotypic changes in grain sorghum over the last five decades. J Agron Crop Sci 197:249–257CrossRefGoogle Scholar
  30. 30.
    Xin Z, Wang M, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2:10–16CrossRefGoogle Scholar
  31. 31.
    Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211–2227CrossRefGoogle Scholar
  32. 32.
    Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236CrossRefGoogle Scholar
  33. 33.
    Zhou B, Yue Y, Sun X, Ding Z, Ma W, Zhao M (2017) Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J 5:43–51CrossRefGoogle Scholar
  34. 34.
    Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740PubMedPubMedCentralGoogle Scholar
  35. 35.
    Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551CrossRefGoogle Scholar
  36. 36.
    Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W et al (2018) Developing a flexible, high-efficiency agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16(7):1388–1395.  https://doi.org/10.1111/pbi.12879CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Burow GB, Klein RR, Franks CD, Klein PE, Schertz KF, Pederson GA et al (2011) Registration of the BTx623/IS3620C recombinant inbred mapping population of sorghum. J Plant Regist 5:141–145CrossRefGoogle Scholar
  38. 38.
    Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S et al (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305CrossRefGoogle Scholar
  39. 39.
    Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499CrossRefGoogle Scholar
  40. 40.
    Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942CrossRefGoogle Scholar
  41. 41.
    Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636CrossRefGoogle Scholar
  42. 42.
    Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791CrossRefGoogle Scholar
  43. 43.
    Peters PJ, Jenks MA, Rich PJ, Axtell JD, Ejeta G (2009) Mutagenesis, selection, and allelic analysis of epicuticular wax mutants in sorghum. Crop Sci 49:1250–1258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Stress and Germplasm Development UnitUSDA-ARSLubbockUSA
  2. 2.Institute of Crop and Nuclear Technology UtilizationZhejiang Academy of Agricultural SciencesHangzhouChina

Personalised recommendations