Advertisement

Sorghum pp 269-277 | Cite as

The Role of Sorghum in Renewables and Biofuels

  • Jeff DahlbergEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1931)

Abstract

Sorghum bicolor (L.) Moench is an important annual C4 cereal crop with unique properties—it can be used in almost all renewable schemes being proposed for renewable fuels and green technologies. In the United States, the grain is currently used as a feedstock in the grain-ethanol process, while in China, the Philippines, and India, sweet sorghums are used in a sugar-to-ethanol process. High-tonnage biomass sorghums are being investigated for their potential use in both cellulosic and lignocellulosic renewables. Other countries have been exploring sorghum’s use as a renewable building material and as a potential source of high-value C molecules for the creation of renewable oils and other important industrial chemicals. Sorghum can become a major player in the renewable feedstock industry because of its potential for high-yield production under limited water and inputs, strong research capacities, a well-established seed industry, and a robust history of research on production and cultural practices. The following review highlights various research activities in support of renewables using sorghum as a primary feedstock.

Key words

Sorghum Renewable Ethanol Cellulosic Lignocellulosic Drought Low inputs Adaptability 

References

  1. 1.
    Kimber CT (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. John Wiley & Sons, New York, NY, pp 3–98Google Scholar
  2. 2.
    Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR, Burke J et al (2005) Towards sequencing the sorghum genome. A U.S. National Science Foundation-sponsored workshop report. Plant Physiol 138:1898–1902CrossRefGoogle Scholar
  3. 3.
    Dahlberg J, Berenji J, Sikora V, Latkovic D (2011) Assessing sorghum [Sorghum bicolor (L.) Moench] germplasm for new traits: food, fuels & unique uses. Maydica 56(1750):85–92Google Scholar
  4. 4.
    Qingshan L, Dahlberg JA (2001) Chinese sorghum genetic resources. Econ Bot 55:401–425CrossRefGoogle Scholar
  5. 5.
    Franklin B (1757) Letter to Mr. Ward from Benjamin Franklin on March 24, 1757. Original letter held in trust with the Nantucket Atheneum, Nantucket, MAGoogle Scholar
  6. 6.
    Petrini C, Casalboni L, Bazzocchi R, Casamenti R (1993) II sorgo da fibra. Agricoltura, Luglio-Agosto: 34–36Google Scholar
  7. 7.
    Rajki-Siklósi E (1996) Examination of sorghum fibre and sugar content in Hungary. In: European seminar on sorghum for energy and industry, Toulouse, p 49–52Google Scholar
  8. 8.
    Pedersen JF (1996) Annual forages: new approaches for C-4 forages. In: Janick J (ed) Progress in new crops. American Society of Horticultural Science, Alexandria, VA, pp 246–251Google Scholar
  9. 9.
    Doggett H (1988) Sorghum. John Wiley & Sons, New York, NYGoogle Scholar
  10. 10.
    Ganjyal G, Fang Q, Hanna M (2007) Freesing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum. Bioresour Technol 98:2814–2818CrossRefGoogle Scholar
  11. 11.
    Coble CG, Hiler EA, Sweeten JM, O’Neal HP, Reidenback VC, LePori WH et al (1981) Small scale ethanol production from cereal feedstocks. In: Pomeranz Y, Munck L (eds) Cereals: a renewable resource. American Association of Cereal Chemists, St. Paul, MN, p 611Google Scholar
  12. 12.
    Sweeten JM, Coble CG, Egg RP (1983) The use of grain sorghum in integrated food and fuel production systems. In: Veziroglu TN (ed) Alternative energy sources V. Part D: biomass/hydrocarbons/hydrogen. Elsevier Science Publishers B.V, AmsterdamGoogle Scholar
  13. 13.
    Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M et al (2008) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35:313–320CrossRefGoogle Scholar
  14. 14.
    Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL et al (2007) Factors impacting ethanol production from grain sorghum the dry-grind process. Cereal Chem 84:130–136CrossRefGoogle Scholar
  15. 15.
    Zhao R, Bean SR, Ioerger BP, Wang D, Boyle DL (2008) Impact of mashing on sorghum proteins and its relationship to ethanol fermentation. J Agric Food Chem 56:946–953CrossRefGoogle Scholar
  16. 16.
    Yan S, Wu X, Dahlberg J, Bean SR, MacRitchie F, Wilson JD et al (2010) Properties of field-sprouted sorghum and its performance in ethanol production. J Cereal Sci 51:374–380CrossRefGoogle Scholar
  17. 17.
    Barcelos CA, Maeda RN, Betancur GJV, Pereira N Jr (2011) Ethanol production from sorghum grains [Sorghum bicolor (L.) Moench]: evaluation of the enzymatic hydrolysis and the hydrolysate fermentability. Braz J Chem Eng 28:597–604CrossRefGoogle Scholar
  18. 18.
    Ramirez MB, Ferrari MD, Lareo C (2016) Fuel ethanol production from commercial grain sorghum cultivars with different tannin content. J Cereal Sci 69:125–131CrossRefGoogle Scholar
  19. 19.
    Miller FR, Creelman RA (1980) Sorghum—a new fuel. In: Loden HD, Wilkinson D (eds) Proc. 35th annual corn and sorghum res. conf., Chicago, IL, 9–11 Dec. 1980. American Seed Trade Assoc., Chicago, IL, p 219–232Google Scholar
  20. 20.
    Broadhead D, Freeman K (1980) Stalk and sugar yield of sweet sorghum as affected by spacing. Agron J 72:523–524CrossRefGoogle Scholar
  21. 21.
    Stevens G, Holou RAY (2010) Sweet sorghum as a biofuel crop. In: Halford NG, Karp A (eds) Energy crops: energy and environment Series No. 3. Royal Society of Chemistry, London, pp 56–74CrossRefGoogle Scholar
  22. 22.
    Reddy B, Ramesh S, Reddy P, Kumar A, Sharma K, Chetty S et al (2006) Sweet sorghum-food, feed, fodder, and fuel crop. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh Bull. 627-2006Google Scholar
  23. 23.
    Alsina E, Valle-Lamboy S, Méndez-Cruz AV (1975) Preliminary evaluation of ten sweet sorghum varieties for sugar production in Puerto Rico. J Agric Univ P R 59:5–14Google Scholar
  24. 24.
    Amaducci S, Monti A, Venturi G (2004) Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. J Ind Crop Prod 20:111–118CrossRefGoogle Scholar
  25. 25.
    Cundiff JS, Vaughan DH (1987) Sweet sorghum for ethanol industry for the Piedmont. Energy Agric 6:133–140CrossRefGoogle Scholar
  26. 26.
    Cundiff JS (1992) Potential reduction of nonstructural carbohydrate losses by juice expression prior to ensiling sweet sorghum. Biomass Bioenergy 3:403–410CrossRefGoogle Scholar
  27. 27.
    Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE et al (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179CrossRefGoogle Scholar
  28. 28.
    Smith GA, Bagby MO, Lewellan RT, Doney DL, Moore PH, Hills FJ et al (1987) Evaluation of sweet sorghum for fermentable sugar production potential. Crop Sci 27:788–793CrossRefGoogle Scholar
  29. 29.
    Tew TL, Cobill RM, Richard EP Jr (2008) Evaluation of sweet sorghum and sorghum x sudangrass hybrids as feedstocks for ethanol production. Bioenergy Res 1:147–152CrossRefGoogle Scholar
  30. 30.
    Worley JW, Vaughan DH, Cundiff JS (1992) Energy analysis of ethanol production from sweet sorghum. Bioresour Technol:263–271CrossRefGoogle Scholar
  31. 31.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstocks for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA/DOE, DOE/GO-102005-2135. http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf (verified 2 Aug 2010)
  32. 32.
    McCollum T, McCuistion K, Bean B (2005) Brown midrib and photoperiod sensitive forage sorghums. In: Plains Nutrition Council Spring Conference, San Antonio, TX, pp 36–46Google Scholar
  33. 33.
    Miller FR, McBee GG, Hons FM, Cothren JT (1989) Biomass production, quantity and quality. In: Hiler E (ed) Advanced concepts in biomass production and biological pretreatment. TAES progress report to Gas Research Institute, College Station, TXGoogle Scholar
  34. 34.
    Murray S, Rooney WL, Mitchell SE, Sharma CA, Klein PE, Mullet JE et al (2008) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193CrossRefGoogle Scholar
  35. 35.
    Porter KS, Axtell JD, Lechtenberg VL, Colenbrader VF (1978) Phenotype, Fiber compostion, and in vitro dry matter disapperance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208CrossRefGoogle Scholar
  36. 36.
    Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yield during the first two years. Agron J 102:806–814CrossRefGoogle Scholar
  37. 37.
    Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Society of Chemical Industry and John Wiley & Sons, Ltd., biofuels, bioprod. Bioref 1(2007):147–157.  https://doi.org/10.1002/bbbCrossRefGoogle Scholar
  38. 38.
    Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:193–204CrossRefGoogle Scholar
  39. 39.
    Sipos B, Réczey J, Somoria Z, Kádár Z, Dienes D, Réczey K (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162CrossRefGoogle Scholar
  40. 40.
    Stanley RL, Dunavin LS (1986) Potential sorghum biomass production in North Florida. In: Smith WH (ed) Biomass energy development. Plenum Press, New York, pp 217–226CrossRefGoogle Scholar
  41. 41.
    Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S143–S153CrossRefGoogle Scholar
  42. 42.
    Dahlberg J, Wolfrum E, Bean B, Rooney WL (2011) Compositional and agronomic evaluation of sorghum biomass as a potential feedstock for renewable fuels. J Biobaased Mater Bioenergy 5:507–513CrossRefGoogle Scholar
  43. 43.
    Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ et al (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204:21–33.  https://doi.org/10.1534/genetics.115.183947CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    De Oliveira AA, Pastina MM, de Souza VF, da Costa Parrella RA, Noda RW, Ferreira Simeone ML et al (2018) Genomic prediction applied to high-biomass sorghum for bioenergy production. Mol Breeding 38:49.  https://doi.org/10.1007/s11032-018-0802-5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UC-ANR Kearney Agricultural Research and Extension (KARE) CenterParlierUSA

Personalised recommendations