Profiling Activity of Cellular Kinases in Migrating T-Cells

  • Chandra Sekhar Chirumamilla
  • Mobashar Hussain Urf Turabe FazilEmail author
  • Claudina Perez-Novo
  • Savithri Rangarajan
  • Rik de Wijn
  • Padma Ramireddy
  • Navin Kumar Verma
  • Wim Vanden Berghe
Part of the Methods in Molecular Biology book series (MIMB, volume 1930)


T-Lymphocyte kinases are important checkpoints that control T-cell motility by regulating a diverse range of signal transduction pathways. The distinct configuration of kinase events in T-cell could be used to fingerprint the status of T-cells. However, only small fraction human kinases have been characterized so far and little is known about the dynamics of the kinome in motile T-cells. Although several direct and indirect strategies exist to characterize cellular kinase activities, such as RNA interference, antibody arrays, enzyme kinetics, and mass spectrometry, this chapter focuses on an alternative multiplex phosphopeptide array-based methodology, which allows the kinome-wide identification of hyper-activated kinases involved in the regulation of T-cell migration.

Key words

Peptide microarray LFA-1 ICAM-1 Kinome analysis Kinase T-cell 



The authors acknowledge funding support from the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Start-Up Grant to N.K.V. and the Ministry of Education (MOE) Singapore under its Singapore MOE Academic Research Fund (AcRF) Tier 1 (2014-T1-001-141) and MOE-AcRF Tier 2 (MOE2017-T2-2-004) grants and Hercules Grant, U Antwerp to W.V.B.


  1. 1.
    Versele M, Talloen W, Rockx C, Geerts T, Janssen B, Lavrijssen T, King P, Göhlmann HWH, Page M, Perera T (2009) Response prediction to a multitargeted kinase inhibitor in cancer cell lines and xenograft tumors using high-content tyrosine peptide arrays with a kinetic readout. Mol Cancer Ther 8:1846–1855CrossRefGoogle Scholar
  2. 2.
    Folkvord S, Flatmark K, Dueland S, De Wijn R, Grøholt KK, Hole KH, Nesland JM, Ruijtenbeek R, Boender PJ, Johansen M, Giercksky KE, Ree AH (2010) Prediction of response to preoperative chemoradiotherapy in rectal cancer by multiplex kinase activity profiling. Int J Radiat Oncol Biol Phys 78:555–562CrossRefGoogle Scholar
  3. 3.
    Anderson JC, Duarte CW, Welaya K, Rohrbach TD, Bredel M, Yang ES, Choradia NV, Thottassery JV, Yancey Gillespie G, Bonner JA, Willey CD (2014) Kinomic exploration of temozolomide and radiation resistance in Glioblastoma multiforme xenolines. Radiother Oncol 111:468–474CrossRefGoogle Scholar
  4. 4.
    Smith A, Stanley P, Jones K, Svensson L, McDowall A, Hogg N (2007) The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev 218:135–146CrossRefGoogle Scholar
  5. 5.
    Verma NK, Fazil MH, Ong ST, Chalasani ML, Low JH, Kottaiswamy A, P P, Kizhakeyil A, Kumar S, Panda AK, Freeley M, Smith SM, Boehm BO, Kelleher D (2016) LFA-1/ICAM-1 ligation in human T cells promotes Th1 polarization through a GSK3β Signaling-dependent notch pathway. J Immunol 197:108–118CrossRefGoogle Scholar
  6. 6.
    Hilhorst R, Houkes L, Mommersteeg M, Musch J, van den Berg A, Ruijtenbeek R (2013) Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples. Methods Mol Biol 977:259–271CrossRefGoogle Scholar
  7. 7.
    Human Protein Reference Database:
  8. 8.
  9. 9.
    Kinexus Bioinformatics Corporation, PhosphoNET:
  10. 10.
    Safaei J, Maňuch J, Gupta A, Stacho L, Pelech S (2011) Prediction of 492 human protein kinase substrate specificities. Proteome Sci 9(Suppl 1):6CrossRefGoogle Scholar
  11. 11.
    Hilhorst R, Houkes L, van den Berg A, Ruijtenbeek R (2009) Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A. Anal Biochem 387:150–161CrossRefGoogle Scholar
  12. 12.
    Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375CrossRefGoogle Scholar
  13. 13.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550CrossRefGoogle Scholar
  14. 14.
    Maat W, El FM, Dirks-Mulder A, Luyten GPM, Gruis NA, Desjardins L, Boender P, Jager MJ, Van Der Velden PA (2009) Episodic Src activation in uveal melanoma revealed by kinase activity profiling. Br J Cancer 101:312–319CrossRefGoogle Scholar
  15. 15.
    Chartier M, Chénard T, Barker J, Najmanovich R (2013) Kinome render: a stand-alone and web-accessible tool to annotate the human protein kinome tree. Peer J 1:e126CrossRefGoogle Scholar
  16. 16.
    Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci 102:13544–13549CrossRefGoogle Scholar
  17. 17.
    Eid S, Turk S, Volkamer A, Rippmann F, Fulle S (2017) Kinmap: a web-based tool for interactive navigation through human kinome data. BMC Bioinformatics 18:16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chandra Sekhar Chirumamilla
    • 1
  • Mobashar Hussain Urf Turabe Fazil
    • 2
    Email author
  • Claudina Perez-Novo
    • 1
  • Savithri Rangarajan
    • 3
  • Rik de Wijn
    • 3
  • Padma Ramireddy
    • 1
  • Navin Kumar Verma
    • 4
  • Wim Vanden Berghe
    • 1
  1. 1.Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical SciencesUniversity of Antwerp (UA)AntwerpenBelgium
  2. 2.Lymphocyte Signalling Research Laboratory, Lee Kong Chain School of MedicineNanyang Technological University SingaporeSingaporeSingapore
  3. 3.PamGene International B.V.5200 BJ ’s-HertogenboschThe Netherlands
  4. 4.Lee Kong Chain School of MedicineNanyang Technological University SingaporeSingaporeSingapore

Personalised recommendations