Designing Calcium-Binding Proteins for Molecular MR Imaging

  • Mani Salarian
  • Shenghui Xue
  • Oluwatosin Y. Ibhagui
  • Jenny J. YangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)


Early diagnosis, noninvasive detection, and staging of various diseases, remain one of the major clinical barriers to effective medical treatment and prevention of disease progression toward major clinical consequences. Molecular imaging technologies play an indispensable role in the clinical field in overcoming these major barriers. The increasing application of imaging techniques and agents in early detection of different diseases such as cancer has resulted in improved treatment response and clinical patient management. In this chapter we will first introduce criteria for the design and engineering of calcium-binding protein (CaBP) parvalbumin as a protein Gd-MRI contrast agent (ProCA) with unprecedented metal selectivity for Gd3+ over physiological metal ions. We will then discuss the further development of targeted MRI contrast agent for molecular imaging of PSMA biomarker for early detection of prostate cancer.

Key words

CaBP Parvalbumin Molecular imaging MRI ProCA Contrast agent PSMA 



We appreciate the critical review by Dr. Michael Kirberger and previous works by Drs. Fan Pu, Jingjuan Qiao, and Jie Jiang. This work is supported in part by grants R42 CA183376, R41CA177034, R41AA112713, EB007268, 1R01GM081749 from National Health Institute to Jenny J. Yang. This work was also supported by the Molecular Basis of Disease (MBD) Fellowship to M. Salarian and Center for Diagnostics and Therapeutics (CDT) Fellowship to O. Y. Ibhagui.


  1. 1.
    Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16(1):93–99. Scholar
  2. 2.
    Lippard SJ (2006) The inorganic side of chemical biology. Nat Chem Biol 2(10):504–507. Scholar
  3. 3.
    Lauffer RB, Vincent AC, Padmanabhan S, Villringer A, Saini S, Elmaleh DR, Brady TJ (1987) Hepatobiliary MR contrast agents: 5-substituted iron-EHPG derivatives. Magn Reson Med 4(6):582–590CrossRefGoogle Scholar
  4. 4.
    Aime S, Barge A, Cabella C, Crich SG, Gianolio E (2004) Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr Pharm Biotechnol 5(6):509–518CrossRefGoogle Scholar
  5. 5.
    Burai L, Scopelliti R, Toth E (2002) EuII-cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO2 responsive macromolecular MRI contrast agents. Chem Commun (Camb) 20:2366–2367CrossRefGoogle Scholar
  6. 6.
    Geraldes CF, Sherry AD, Cacheris WP, Kuan KT, Brown RD 3rd, Koenig SH, Spiller M (1988) Number of inner-sphere water molecules in Gd3+ and Eu3+ complexes of DTPA-amide and -ester conjugates. Magn Reson Med 8(2):191–199CrossRefGoogle Scholar
  7. 7.
    Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35(6):512–523. Scholar
  8. 8.
    Weinmann HJ, Press WR, Gries H (1990) Tolerance of extracellular contrast agents for magnetic resonance imaging. Investig Radiol 25(Suppl 1):S49–S50CrossRefGoogle Scholar
  9. 9.
    Opsahl LR, Uzgiris EE, Vera DR (1995) Tumor imaging with a macromolecular paramagnetic contrast agent: gadopentetate dimeglumine-polylysine. Acad Radiol 2(9):762–767CrossRefGoogle Scholar
  10. 10.
    Langereis S, de Lussanet QG, van Genderen MH, Meijer EW, Beets-Tan RG, Griffioen AW, van Engelshoven JM, Backes WH (2006) Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141. Scholar
  11. 11.
    Bryant LH Jr, Brechbiel MW, Wu C, Bulte JW, Herynek V, Frank JA (1999) Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 9(2):348–352CrossRefGoogle Scholar
  12. 12.
    Sirlin CB, Vera DR, Corbeil JA, Caballero MB, Buxton RB, Mattrey RF (2004) Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. Acad Radiol 11(12):1361–1369. Scholar
  13. 13.
    Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11(6):733–743CrossRefGoogle Scholar
  14. 14.
    Lanza GM, Winter P, Caruthers S, Schmeider A, Crowder K, Morawski A, Zhang H, Scott MJ, Wickline SA (2004) Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr Pharm Biotechnol 5(6):495–507CrossRefGoogle Scholar
  15. 15.
    Anderson EA, Isaacman S, Peabody DS, Wang EY, Canary JW, Kirshenbaum K (2006) Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6(6):1160–1164. Scholar
  16. 16.
    Strijkers GJ, Mulder WJ, van Heeswijk RB, Frederik PM, Bomans P, Magusin PC, Nicolay K (2005) Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 18(4):186–192. Scholar
  17. 17.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324. Scholar
  18. 18.
    Wallingford JB, Ewald AJ, Harland RM, Fraser SE (2001) Calcium signaling during convergent extension in Xenopus. Curr Biol 11(9):652–661CrossRefGoogle Scholar
  19. 19.
    Caravan P, Greenwood JM, Welch JT, Franklin SJ (2003) Gadolinium-binding helix-turn-helix peptides: DNA-dependent MRI contrast agents. Chem Commun (Camb) 20:2574–2575CrossRefGoogle Scholar
  20. 20.
    Kim Y, Welch JT, Lindstrom KM, Franklin SJ (2001) Chimeric HTH motifs based on EF-hands. J Biol Inorg Chem 6(2):173–181CrossRefGoogle Scholar
  21. 21.
    Atanasijevic T, Shusteff M, Fam P, Jasanoff A (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci U S A 103(40):14707–14712. Scholar
  22. 22.
    Xue S, Yang H, Qiao J, Pu F, Jiang J, Hubbard K, Hekmatyar K, Langley J, Salarian M, Long RC, Bryant RG, Hu XP, Grossniklaus HE, Liu ZR, Yang JJ (2015) Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc Natl Acad Sci U S A 112(21):6607–6612. Scholar
  23. 23.
    Pu F, Salarian M, Xue S, Qiao J, Feng J, Tan S, Patel A, Li X, Mamouni K, Hekmatyar K, Zou J, Wu D, Yang JJ (2016) Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. Nanoscale 8(25):12668–12682. Scholar
  24. 24.
    Pu F, Qiao J, Xue S, Yang H, Patel A, Wei L, Hekmatyar K, Salarian M, Grossniklaus HE, Liu ZR, Yang JJ (2015) GRPR-targeted protein contrast agents for molecular imaging of receptor expression in cancers by MRI. Sci Rep 5:16214. Scholar
  25. 25.
    Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ (2014) Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 34(5):1070–1099. Scholar
  26. 26.
    Qiao J, Xue S, Pu F, White N, Jiang J, Liu ZR, Yang JJ (2014) Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 19(2):259–270. Scholar
  27. 27.
    Li S, Jiang J, Zou J, Qiao J, Xue S, Wei L, Long R, Wang L, Castiblanco A, White N, Ngo J, Mao H, Liu ZR, Yang JJ (2012) PEGylation of protein-based MRI contrast agents improves relaxivities and biocompatibilities. J Inorg Biochem 107(1):111–118. Scholar
  28. 28.
    Pu F, Xue S, Qiao J, Patel A, Yang JJ (2016) Towards the Molecular Imaging of Prostate Cancer Biomarkers Using Protein-based MRI Contrast Agents. Curr Protein Pept Sci 17(6):519–533CrossRefGoogle Scholar
  29. 29.
    Wang X, Kirberger M, Qiu F, Chen G, Yang JJ (2009) Towards predicting Ca2+−binding sites with different coordination numbers in proteins with atomic resolution. Proteins 75(4):787–798. Scholar
  30. 30.
    Kirberger M, Wang X, Deng H, Yang W, Chen G, Yang JJ (2008) Statistical analysis of structural characteristics of protein Ca2+− binding sites. J Biol Inorg Chem 13(7):1169–1181. Scholar
  31. 31.
    Wang X, Zhao K, Kirberger M, Wong H, Chen G, Yang JJ (2010) Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes. Protein Sci 19(6):1180–1190. Scholar
  32. 32.
    Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ (2006) Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 65(3):643–655. Scholar
  33. 33.
    Dees A, Zahl A, Puchta R, Hommes NJ, Heinemann FW, Ivanovic-Burmazovic I (2007) Water exchange on seven-coordinate Mn(II) complexes with macrocyclic pentadentate ligands: insight in the mechanism of Mn(II) SOD mimetics. Inorg Chem 46(7):2459–2470. Scholar
  34. 34.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450PubMedGoogle Scholar
  35. 35.
    Sudnick DR, Horrocks WD Jr (1979) Lanthanide ion probes of structure in biology. Environmentally sensitive fine structure in laser-induced terbium(III) luminescence. Biochim Biophys Acta 578(1):135–144CrossRefGoogle Scholar
  36. 36.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mani Salarian
    • 1
  • Shenghui Xue
    • 1
    • 2
  • Oluwatosin Y. Ibhagui
    • 1
  • Jenny J. Yang
    • 1
    Email author
  1. 1.Department of Chemistry, Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaUSA
  2. 2.Inlighta BiosciencesAtlantaUSA

Personalised recommendations