Characterization of Calcium-Binding Proteins from Parasitic Worms

  • Charlotte M. Thomas
  • David J. TimsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)


Parasitic diseases caused by helminths (worms) represent a major burden on humanity with hundreds of millions of people infected worldwide. However, there are relatively few drugs to treat these diseases, and resistance is emerging to some of these. Therefore, there is a pressing need to characterize proteins from helminths as potential drug targets. Calcium signalling proteins represent attractive targets due to the vital nature of properly regulated calcium-mediated signalling and the presence of unusual calcium-binding proteins in helminths. Here we present methods to characterize these proteins in terms of their ion-binding properties, drug-binding properties, and oligomeric state, including a method to correct for the effects of non-spherical proteins in analytical gel filtration. In addition we present an overview of their recombinant expression and purification and methods to predict their structures.

Key words

EF-hand Native gel electrophoresis Cross-linking Protein modelling Drug binding Calcium ion Divalent cation Trematodes Schistosoma spp. Fasciola spp. Neglected tropical disease 



CMT thanks the Department of Employment and Learning Northern Ireland (DELNI, UK) for a PhD studentship.


  1. 1.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  2. 2.
    Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás G (2004) Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J Phys Chem A 108:7261–7271CrossRefGoogle Scholar
  3. 3.
    Williams RJ (2006) The evolution of calcium biochemistry. Biochim Biophys Acta 1763:1139–1146PubMedCrossRefGoogle Scholar
  4. 4.
    Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221CrossRefGoogle Scholar
  5. 5.
    Kawasaki H, Kretsinger RH (2017) Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Sci 26:1898–1920PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gopalakrishna R, Anderson WB (1982) Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun 104:830–836PubMedCrossRefGoogle Scholar
  7. 7.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328PubMedCrossRefGoogle Scholar
  8. 8.
    Roufogalis BD, Minocherhomjee AM, Al-Jobore A (1983) Pharmacological antagonism of calmodulin. Can J Biochem Cell Biol 61:927–933PubMedCrossRefGoogle Scholar
  9. 9.
    Hait WN (1987) Targeting calmodulin for the development of novel cancer chemotherapeutic agents. Anticancer Drug Des 2:139–149PubMedGoogle Scholar
  10. 10.
    Kang S, Hong J, Lee JM, Moon HE, Jeon B, Choi J, Yoon NA, Paek SH, Roh EJ, Lee CJ, Kang SS (2017) Trifluoperazine, a Well-Known Antipsychotic, Inhibits Glioblastoma Invasion by Binding to Calmodulin and Disinhibiting Calcium Release Channel IP3R. Mol Cancer Ther 16:217–227PubMedCrossRefGoogle Scholar
  11. 11.
    Coles GC (1979) The effect of praziquantel on Schistosoma mansoni. J Helminthol 53:31–33PubMedCrossRefGoogle Scholar
  12. 12.
    Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM (2017) Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother 61:e02582–e02516PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Furtado LF, de Paiva Bello AC, Rabelo EM (2016) Benzimidazole resistance in helminths: from problem to diagnosis. Acta Trop 162:95–102PubMedCrossRefGoogle Scholar
  14. 14.
    Carmichael I, Visser R, Schneider D, Soll M (1987) Haemonchus contortus resistance to ivermectin. J S Afr Vet Assoc 58(2):93PubMedGoogle Scholar
  15. 15.
    Vieira LS, Berne ME, Cavalcante AC, Costa CA (1992) Haemonchus contortus resistance to ivermectin and netobimin in Brazilian sheep. Vet Parasitol 45(1–2):111–116PubMedCrossRefGoogle Scholar
  16. 16.
    Blasco B, Leroy D, Fidock DA (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917–928PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Baker N, de Koning HP, Maser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29:110–118PubMedCrossRefGoogle Scholar
  18. 18.
    Takala-Harrison S, Laufer MK (2015) Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci 1342:62–67PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL, Keiser J, Hatz CF (2012) Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med Wkly 142:w13727PubMedGoogle Scholar
  20. 20.
    Murrell KD (1991) Economic losses resulting from food-borne parasitic zoonoses. Southeast Asian J Trop Med Public Health 22(Suppl):377–381PubMedGoogle Scholar
  21. 21.
    Russell SL, Timson DJ (2014) Calcium binding proteins in the liver fluke, Fasciola hepatica. In: New developments in calcium signaling research. Nova Science Publishers, pp 89–104Google Scholar
  22. 22.
    Fraga H, Faria TQ, Pinto F, Almeida A, Brito RM, Damas AM (2010) FH8--a small EF-hand protein from Fasciola hepatica. FEBS J 277:5072–5085PubMedCrossRefGoogle Scholar
  23. 23.
    Hu S, Law P, Lv Z, Wu Z, Fung MC (2008) Molecular characterization of a calcium-binding protein SjCa8 from Schistosoma japonicum. Parasitol Res 103:1047–1053PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas CM, Timson DJ (2016) A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 44:1005–1010PubMedCrossRefGoogle Scholar
  25. 25.
    Fitzsimmons CM, Jones FM, Stearn A, Chalmers IW, Hoffmann KF, Wawrzyniak J, Wilson S, Kabatereine NB, Dunne DW (2012) The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses. PLoS Negl Trop Dis 6:e1593PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Banford S, Drysdale O, Hoey EM, Trudgett A, Timson DJ (2013) FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Biochimie 95:751–758PubMedCrossRefGoogle Scholar
  27. 27.
    Cheung S, Thomas CM, Timson DJ (2016) FhCaBP1 (FH22): a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Exp Parasitol 170:109–115PubMedCrossRefGoogle Scholar
  28. 28.
    Orr R, Kinkead R, Newman R, Anderson L, Hoey EM, Trudgett A, Timson DJ (2012) FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitol Res 111:1707–1713PubMedCrossRefGoogle Scholar
  29. 29.
    Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ (2015) Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108:40–47PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Thomas CM, Timson DJ (2015) FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 142:1375–1386PubMedCrossRefGoogle Scholar
  31. 31.
    Subpipattana P, Grams R, Vichasri-Grams S (2012) Analysis of a calcium-binding EF-hand protein family in Fasciola gigantica. Exp Parasitol 130:364–373PubMedCrossRefGoogle Scholar
  32. 32.
    Vichasri-Grams S, Subpipattana P, Sobhon P, Viyanant V, Grams R (2006) An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Mol Biochem Parasitol 146:10–23PubMedCrossRefGoogle Scholar
  33. 33.
    Kim YJ, Yoo WG, Lee MR, Kang JM, Na BK, Cho SH, Park MY, Ju JW (2017) Molecular and structural characterization of the tegumental 20.6-kDa protein in Clonorchis sinensis as a potential druggable target. Int J Mol Sci 18:557PubMedCentralCrossRefGoogle Scholar
  34. 34.
    Senawong G, Laha T, Loukas A, Brindley PJ, Sripa B (2012) Cloning, expression, and characterization of a novel Opisthorchis viverrini calcium-binding EF-hand protein. Parasitol Int 61:94–100PubMedCrossRefGoogle Scholar
  35. 35.
    Nguyen TH, Thomas CM, Timson DJ, van Raaij MJ (2016) Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain. Parasitol Res 115:2879–2886PubMedCrossRefGoogle Scholar
  36. 36.
    Jo CH, Son J, Kim S, Oda T, Kim J, Lee MR, Sato M, Kim HT, Unzai S, Park SY, Hwang KY (2017) Structural insights into a 20.8-kDa tegumental-allergen-like (TAL) protein from Clonorchis sinensis. Sci Rep 7:1764PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Xu J, Ren Y, Xu X, Chen J, Li Y, Gan W, Zhang Z, Zhan H, Hu X (2014) Schistosoma japonicum tegumental protein 20.8, role in reproduction through its calcium binding ability. Parasitol Res 113:491–497PubMedCrossRefGoogle Scholar
  38. 38.
    Durst RA, Staples BR (1972) Tris/tris-HCl: a standard buffer for use in the physiologic pH range. Clin Chem 18(3):206–208PubMedGoogle Scholar
  39. 39.
    Lewis FA, Liang YS, Raghavan N, Knight M (2008) The NIH-NIAID schistosomiasis resource center. PLoS Negl Trop Dis 2(7):e267PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  41. 41.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  42. 42.
    Ortega A, Amoros D, Garcia de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:W469–W473PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(Suppl 9):114–122PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar
  48. 48.
    Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins 50:437–450PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Z, Eickholt J, Cheng J (2011) APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics 27:1715–1716PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kim S, Cullis DN, Feig LA, Baleja JD (2001) Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry 40(23):6776–6785PubMedCrossRefGoogle Scholar
  52. 52.
    Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  53. 53.
    Ornstein L, Davis BJ (1964) Disc electrophoresis-I: background and theory. Ann N Y Acad Sci 121:321–349PubMedCrossRefGoogle Scholar
  54. 54.
    McLellan T (1982) Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem 126:94–99PubMedCrossRefGoogle Scholar
  55. 55.
    Atcheson E, Hamilton E, Pathmanathan S, Greer B, Harriott P, Timson DJ (2011) IQ-motif selectivity in human IQGAP2 and IQGAP3:binding of calmodulin and myosin essential light chain. Biosci Rep 31:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298PubMedCrossRefGoogle Scholar
  57. 57.
    Wu FC, Laskowski M (1956) The effect of calcium on chymotrypsins alpha and B. Biochim Biophys Acta 19:110–115PubMedCrossRefGoogle Scholar
  58. 58.
    Squire PG, Moser P, O'Konski CT (1968) The hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry 7:4261–4272PubMedCrossRefGoogle Scholar
  59. 59.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  60. 60.
    Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54PubMedCrossRefGoogle Scholar
  61. 61.
    Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biological SciencesQueen’s University BelfastBelfastUK
  2. 2.Institute for Global Food SecurityQueen’s University BelfastBelfastUK
  3. 3.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK

Personalised recommendations