Advertisement

Measuring Calumenin Impact on ER-Calcium Depletion Using Transient Calumenin Overexpression and Silencing

  • Réginald Philippe
  • Olivier MignenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

Calumenin is a secretory pathway protein regulating different endoplasmic reticulum (ER) proteins such as the sarco-endoplasmic reticulum calcium ATPase (SERCA) pumps. Combined with its diverse cellular distribution, its calcium-binding ability, and its interaction with proteins involved in calcium signaling, it is easy to speculate on future description of important roles of calumenin in calcium homeostasis in many cell types, as it was initially observed in muscle cells. In this chapter, we describe basic techniques to modulate calumenin expression and detect its impact on ER calcium content using classic transfection and Western blot techniques, as well as ER calcium measurement using microplate reader.

Key words

Calumenin ER calcium Microplate reader Transfection Western blot Ca2+ measurement 

References

  1. 1.
    Honoré B, Vorum H (2000) The CREC family, a novel family of multiple EF-hand, low-affinity Ca2+-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett 466:11–18CrossRefGoogle Scholar
  2. 2.
    Honoré B (2009) The rapidly expanding CREC protein family: members, localization, function, and role in disease. Bioessays 31:262–277.  https://doi.org/10.1002/bies.200800186CrossRefPubMedGoogle Scholar
  3. 3.
    Feng H, Chen L, Wang Q et al (2013) Calumenin-15 facilitates filopodia formation by promoting TGF-b superfamily cytokine GDF-15 transcription. Cell Death Dis 4:e870.  https://doi.org/10.1038/cddis.2013.403CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee JH, Kwon EJ, Kim DH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 439:327–332.  https://doi.org/10.1016/j.bbrc.2013.08.087CrossRefPubMedGoogle Scholar
  5. 5.
    Tripathi R, Benz N, Culleton B et al (2014) Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator. PLoS One 9:e104970.  https://doi.org/10.1371/journal.pone.0104970CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Philippe R, Antigny F, Buscaglia P et al (2017) Calumenin contributes to ER-Ca2+homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium 62:47–59.  https://doi.org/10.1016/j.ceca.2017.01.011CrossRefPubMedGoogle Scholar
  7. 7.
    Wallin R, Hutson SM, Cain D et al (2001) A molecular mechanism for genetic warfarin resistance in the rat. FASEB J 15:2542–2544.  https://doi.org/10.1096/fj.01-0337fjeCrossRefPubMedGoogle Scholar
  8. 8.
    Wajih N, Sane DC, Hutson SM, Wallin R (2004) The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system: characterization of the system in normal and warfarin-resistant rats. J Biol Chem 279:25276–25283.  https://doi.org/10.1074/jbc.M401645200CrossRefPubMedGoogle Scholar
  9. 9.
    Hansen GAW, Vorum H, Jacobsen C, Honoré B (2009) Calumenin but not reticulocalbin forms a Ca2+-dependent complex with thrombospondin-1. A potential role in haemostasis and thrombosis. Mol Cell Biochem 320:25–33.  https://doi.org/10.1007/s11010-008-9895-1CrossRefPubMedGoogle Scholar
  10. 10.
    Hansen GAW, Ludvigsen M, Jacobsen C et al (2015) Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin. PLoS One 10:e0132283.  https://doi.org/10.1371/journal.pone.0132283CrossRefPubMedGoogle Scholar
  11. 11.
    Vorum H, Jacobsen C, Honoré B (2000) Calumenin interacts with serum amyloid P component. FEBS Lett 465:129–134.  https://doi.org/10.1016/S0014-5793(99)01734-2CrossRefPubMedGoogle Scholar
  12. 12.
    Jover E, Marín F, Quintana M et al (2015) CALU polymorphism A29809G affects calumenin availability involving vascular calcification. J Mol Cell Cardiol 82:218–227.  https://doi.org/10.1016/j.yjmcc.2015.03.015CrossRefPubMedGoogle Scholar
  13. 13.
    Østergaard M, Hansen GAW, Vorum H, Honoré B (2006) Proteomic profiling of fibroblasts reveals a modulating effect of extracellular calumenin on the organization of the actin cytoskeleton. Proteomics 6:3509–3519.  https://doi.org/10.1002/pmic.200500686CrossRefPubMedGoogle Scholar
  14. 14.
    Hernández-Romero D, Ruiz-Nodar JM, Marn F et al (2010) CALU A29809G polymorphism in coronary atherothrombosis: implications for coronary calcification and prognosis. Ann Med 42:439–446.  https://doi.org/10.3109/07853890.2010.499131CrossRefPubMedGoogle Scholar
  15. 15.
    Coppinger JA, Cagney G, Toomey S et al (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104.  https://doi.org/10.1182/blood-2003-08-2804CrossRefPubMedGoogle Scholar
  16. 16.
    Wilson R, Norris EL, Brachvogel B et al (2012) Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development. Mol Cell Proteomics 11:M111.014159.  https://doi.org/10.1074/mcp.M111.014159CrossRefPubMedGoogle Scholar
  17. 17.
    Fietta A, Bardoni A, Salvini R et al (2006) Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lung fibrosis. Arthritis Res Ther 8:R160.  https://doi.org/10.1186/ar2067CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nakazawa T, Nakajima A, Seki N et al (2004) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22:520–525.  https://doi.org/10.1016/j.orthres.2003.10.007CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Q, Shen B, Chen L et al (2015) Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene 34:1006–1018.  https://doi.org/10.1038/onc.2014.52CrossRefPubMedGoogle Scholar
  20. 20.
    Zheng P, Wang Q, Teng J, Chen J (2015) Calumenin and fibulin-1 on tumor metastasis: implications for pharmacology. Pharmacol Res 99:11–15.  https://doi.org/10.1016/j.phrs.2015.05.001CrossRefPubMedGoogle Scholar
  21. 21.
    Nagano K, Imai S, Zhao X et al (2015) Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors. Int J Oncol 47:195–203.  https://doi.org/10.3892/ijo.2015.3000CrossRefPubMedGoogle Scholar
  22. 22.
    Sahoo SK, Kim DH (2010) Characterization of calumenin in mouse heart. BMB Rep 43:158–163CrossRefGoogle Scholar
  23. 23.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193(1):265–275.  https://doi.org/10.1016/0304-3894(92)87011-4CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut National de la Santé et de la Recherche Médicale, U1151ParisFrance
  2. 2.Laboratoire Canalopathies & Signalisation CalciqueInserm U1227, Université de Bretagne Occidentale (UBO)BrestFrance

Personalised recommendations