Advertisement

Reviewing the Crystal Structure of S100Z and Other Members of the S100 Family: Implications in Calcium-Regulated Quaternary Structure

  • Vito CalderoneEmail author
  • Marco Fragai
  • Claudio Luchinat
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

This paper takes the cue from the previously solved crystal structure of human apo-S100Z and compares it with that of the calcium-bound S100Z from zebrafish in order to stress, for this particular S100, the significant role of the presence of calcium in promoting supramolecular assemblies with likely biological meaning. This consideration is then expanded through a wider review on analogous situations concerning all other S100s for which there is crystallographic o biochemical evidence of how the presence of calcium promotes the formation of quaternary complexes.

The paper also deals with some considerations on the quality of the crystals obtained for the solved members of this family and on the need for experimental phasing for solving some of the structures where the good general sequence homology among the members of the family would have suggested molecular replacement (MR) as the easiest way to solve them.

These considerations, along with the PCA analysis carried out on all the known S100s, further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation for several members of this family of proteins.

Key words

S100Z EF hand Oligomerization Calcium PCA 

Notes

Acknowledgments

We thank the staff members of ID-29 beamline at ESRF (Grenoble, France) for assistance during data collection.

This work was supported by Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI), and supported by national member subscriptions. Specifically, we thank the EU ESFRI Instruct Core Centre CERM-Italy.

References

  1. 1.
    Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochim Biophys Acta 1763(11):1282–1283PubMedCrossRefGoogle Scholar
  2. 2.
    Donato R (1986) S-100 proteins. Cell Calcium 7(3):123–145PubMedCrossRefGoogle Scholar
  3. 3.
    Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368PubMedGoogle Scholar
  4. 4.
    Chazin WJ (2011) Relating form and function of EF-hand calcium binding proteins. Acc Chem Res 44(3):171–179PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4):134–140PubMedCrossRefGoogle Scholar
  6. 6.
    Kojetin DJ et al (2006) Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K). Nat Struct Mol Biol 13(7):641–647PubMedCrossRefGoogle Scholar
  7. 7.
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122PubMedCrossRefGoogle Scholar
  8. 8.
    Anonymous (2001) Handbook on Metalloproteins Edited by Ivano Bertini (University of Florence), Astrid Sigel, and Helmut Sigel (University of Basel). Marcel Dekker: New York, Basel. 2001. xxx + 1182 pp (plus 16 color plates). $265.00. ISBN: 0-8247-0520-3. J Am Chem Soc 123(50):12748–12748Google Scholar
  9. 9.
    Zimmer DB, Eubanks JO, Ramakrishnan D, Criscitiello MF (2013) Evolution of the S100 family of calcium sensor proteins. Cell Calcium 53(3):170–179PubMedCrossRefGoogle Scholar
  10. 10.
    Reckenbeil J et al (2016) Cellular distribution and gene expression pattern of metastasin (S100A4), calgranulin A (S100A8), and calgranulin B (S100A9) in oral lesions as markers for molecular pathology. Cancer Investig 34(6):246–254CrossRefGoogle Scholar
  11. 11.
    Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37(4):417–429PubMedCrossRefGoogle Scholar
  12. 12.
    Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60(6):540–551PubMedCrossRefGoogle Scholar
  13. 13.
    Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450(3):191–231PubMedCrossRefGoogle Scholar
  14. 14.
    Donato R et al (2012) Functions of S100 proteins. Curr Mol Med 13(1):24–57CrossRefGoogle Scholar
  15. 15.
    Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7):637–668PubMedCrossRefGoogle Scholar
  16. 16.
    Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15(2):96–109PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Moroz OV et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Arnesano F et al (2005) Structural interplay between calcium(II) and copper(II) binding to S100A13 protein. Angew Chem Int Ed Engl 44(39):6341–6344PubMedCrossRefGoogle Scholar
  19. 19.
    Gilston BA, Skaar EP, Chazin WJ (2016) Binding of transition metals to S100 proteins. Sci China Life Sci 59(8):792–801PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xiao Y, Shaw GS, Konermann L (2017) Calcium-mediated control of S100 proteins: allosteric communication via an agitator/signal blocking mechanism. J Am Chem Soc 139(33):11460–11470PubMedCrossRefGoogle Scholar
  21. 21.
    Nelson MR, Chazin WJ (1998) An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 7(2):270–282PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rety S et al (1999) The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol 6(1):89–95PubMedCrossRefGoogle Scholar
  23. 23.
    Babini E et al (2011) Structural characterization of human S100A16, a low-affinity calcium binder. J Biol Inorg Chem 16(2):243–256PubMedCrossRefGoogle Scholar
  24. 24.
    Bertini I et al (2013) Solution structure and dynamics of human S100A14. J Biol Inorg Chem 18(2):183–194PubMedCrossRefGoogle Scholar
  25. 25.
    Bhattacharya S, Large E, Heizmann CW, Hemmings B, Chazin WJ (2003) Structure of the Ca2+/S100B/NDR kinase peptide complex: insights into S100 target specificity and activation of the kinase. Biochemistry 42(49):14416–14426PubMedCrossRefGoogle Scholar
  26. 26.
    Okada M, Tokumitsu H, Kubota Y, Kobayashi R (2002) Interaction of S100 proteins with the antiallergic drugs, olopatadine, amlexanox, and cromolyn: identification of putative drug binding sites on S100A1 protein. Biochem Biophys Res Commun 292(4):1023–1030PubMedCrossRefGoogle Scholar
  27. 27.
    Agamennone M et al (2010) Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 5(3):428–435PubMedCrossRefGoogle Scholar
  28. 28.
    Streicher WW, Lopez MM, Makhatadze GI (2010) Modulation of quaternary structure of S100 proteins by calcium ions. Biophys Chem 151(3):181–186PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277(22):4578–4590PubMedCrossRefGoogle Scholar
  30. 30.
    Botelho HM, Fritz G, Gomes CM (2012) Analysis of S100 oligomers and amyloids. Methods Mol Biol 849:373–386PubMedCrossRefGoogle Scholar
  31. 31.
    Capozzi F, Luchinat C, Micheletti C, Pontiggia F (2007) Essential dynamics of helices provide a functional classification of EF-hand proteins. J Proteome Res 6(11):4245–4255PubMedCrossRefGoogle Scholar
  32. 32.
    Calderone V, Fragai M, Gallo G, Luchinat C (2017) Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds. J Biol Inorg Chem 22(4):519–526PubMedCrossRefGoogle Scholar
  33. 33.
    Raffat MA et al (2018) S100 proteins in oral squamous cell carcinoma. Clin Chim Acta 480:143–149PubMedCrossRefGoogle Scholar
  34. 34.
    Moroz OV, Bronstein IB, Wilson KS (2011) The crystal structure of zebrafish S100Z: implications for calcium-promoted S100 protein oligomerisation. J Mol Biol 411(5):1072–1082PubMedCrossRefGoogle Scholar
  35. 35.
    Calderone V, Fragai M, Gallo G, Luchinat C (2017) Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds. J Biol Inorg Chem 22:519–526PubMedCrossRefGoogle Scholar
  36. 36.
    Calderone V, Fragai M, Luchinat C (2018) When molecular replacement has no trivial solution: the importance of model editing in human S100Z X-ray structure solution. Inorg Chim Acta 470:402–406CrossRefGoogle Scholar
  37. 37.
    Otterbein LR, Kordowska J, Witte-Hoffmann C, Wang CLA, Dominguez R (2002) Crystal structures of S100A6 in the Ca2+-free and Ca2+-bound states. Structure 10(4):557–567PubMedCrossRefGoogle Scholar
  38. 38.
    Ishikawa K, Nakagawa A, Tanaka I, Suzuki M, Nishihira J (2000) The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 Å resolution. Acta Crystallogr D Biol Crystallogr 56(5):559–566PubMedCrossRefGoogle Scholar
  39. 39.
    Koch M, Fritz G (2012) The structure of Ca2+-loaded S100A2 at 1.3-A resolution. FEBS J 279(10):17799–11810CrossRefGoogle Scholar
  40. 40.
    Malashkevich VN et al (2008) Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry 47(18):5111–5126PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Babini E et al (2005) Principal component analysis of the conformational freedom within the EF-hand superfamily. J Proteome Res 4(6):1961–1971PubMedCrossRefGoogle Scholar
  42. 42.
    Bertini I et al (2009) Solution structure and dynamics of S100A5 in the apo and Ca2+-bound states. J Biol Inorg Chem 14(7):1097–1107PubMedCrossRefGoogle Scholar
  43. 43.
    Leclerc E, Vetter SW (2015) The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim Biophys Acta 1852(12):2706–2711PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Permyakov SE et al (2011) Intrinsic disorder in S100 proteins. Mol BioSyst 7(7):2164–2180PubMedCrossRefGoogle Scholar
  45. 45.
    Korndörfer I, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J Mol Biol 370(5):887–898PubMedCrossRefGoogle Scholar
  46. 46.
    Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB (2009) The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. J Mol Biol 391(3):536–551PubMedCrossRefGoogle Scholar
  47. 47.
    Kwek J et al (2013) Molecular evolution of a novel marsupial S100 protein (S100A19) which is expressed at specific stages of mammary gland and gut development. Mol Phylogenet Evol 69(1):4–16PubMedCrossRefGoogle Scholar
  48. 48.
    Melville Z et al (2017) X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr F Struct Biol Commun 73(Pt 4):215–221PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Koch M, Fritz G (2012) The structure of Ca2+-loaded S100A2 at 1.3-A resolution. FEBS J 279(10):1799–1810PubMedCrossRefGoogle Scholar
  50. 50.
    Mittl PR et al (2002) Metal-free MIRAS phasing: structure of apo-S100A3. Acta Crystallogr D Biol Crystallogr 58(Pt 8):1255–1261PubMedCrossRefGoogle Scholar
  51. 51.
    Gingras AR et al (2008) Crystal structure of the Ca(2+)-form and Ca(2+)-binding kinetics of metastasis-associated protein, S100A4. FEBS Lett 582(12):1651–1656PubMedCrossRefGoogle Scholar
  52. 52.
    Otterbein LR, Kordowska J, Witte-Hoffmann C, Wang CL, Dominguez R (2002) Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure 10(4):557–567PubMedCrossRefGoogle Scholar
  53. 53.
    Brodersen DE et al (1998) EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Structure 6(4):477–489PubMedCrossRefGoogle Scholar
  54. 54.
    Lin H, Andersen GR, Yatime L (2016) Crystal structure of human S100A8 in complex with zinc and calcium. BMC Struct Biol 16(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Damo SM et al (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 110(10):3841–3846PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chang CC et al (2016) Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: a novel route to drug development against cell proliferation. Biochim Biophys Acta 1864(11):1558–1569PubMedCrossRefGoogle Scholar
  57. 57.
    Rety S et al (2000) Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 8(2):175–184PubMedCrossRefGoogle Scholar
  58. 58.
    Imai FL, Nagata K, Yonezawa N, Nakano M, Tanokura M (2008) Structure of calcium-bound human S100A13 at pH 7.5 at 1.8 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 2):70–76PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Murray JI et al (2012) Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding. BMC Struct Biol 12:16PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cavalier MC et al (2014) Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry 53(42):6628–6640PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhang H et al (2003) The crystal structure at 2A resolution of the Ca2+ -binding protein S100P. J Mol Biol 325(4):785–794PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vito Calderone
    • 1
    • 2
    Email author
  • Marco Fragai
    • 1
    • 2
  • Claudio Luchinat
    • 1
    • 2
  1. 1.CERM, University of FlorenceSesto FiorentinoItaly
  2. 2.Department of Chemistry Ugo SchiffUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations