Advertisement

Targeting S100 Calcium-Binding Proteins with Small Molecule Inhibitors

  • Paul T. Wilder
  • Kristen M. Varney
  • David J. WeberEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1929)

Abstract

S100B is a small, dimeric, calcium-binding protein that is implicated in various diseases, most significantly cancer; therefore, there is interest in identifying S100B inhibitors that may have therapeutic value (Bresnick et al. Nat Rev Cancer 15:96–109, 2015; Chong et al. Curr Med Chem 23:1571–1596). Two fluorescence polarization competition assays (FPCA) are described here for S100B and S100A1 that are amenable to high-throughput screening (HTS) campaigns and can be used to determine the binding affinity (Ki) of the inhibitors. One FPCA is used to identify and characterize inhibitors of S100B with the aim of finding new therapeutics, and the other was developed as a counter-screen to avoid inhibitors of S100A1 due to its role in regulating skeletal and cardiac muscle function. Also outlined are methods for expressing and purifying S100B and S100A1 in quantities needed for performing large HTS campaigns.

Key words

High-throughput screening Fluorescence polarization competition assay S100 protein Small molecule Protein-protein interface Inhibitors Calcium binding S100B S100A1 Cancer Melanoma 

References

  1. 1.
    Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15(2):96–109.  https://doi.org/10.1038/nrc3893 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chong ZZ, Changyaleket B, Xu H, Dull RO, Schwartz DE (2016) Identifying S100B as a biomarker and a therapeutic target for brain injury and multiple diseases. Curr Med Chem 23(15):1571–1596CrossRefGoogle Scholar
  3. 3.
    Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ (2006) Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. Biochim Biophys Acta 1763(11):1284–1297.  https://doi.org/10.1016/j.bbamcr.2006.08.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Hartman KG, Vitolo MI, Pierce AD, Fox JM, Shapiro P, Martin SS, Wilder PT, Weber DJ (2014) Complex formation between S100B protein and the p90 ribosomal S6 kinase (RSK) in malignant melanoma is calcium-dependent and inhibits extracellular signal-regulated kinase (ERK)-mediated phosphorylation of RSK. J Biol Chem 289(18):12886–12895.  https://doi.org/10.1074/jbc.M114.561613 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B (2013) S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 19(14):3764–3775.  https://doi.org/10.1158/1078-0432.CCR-12-3725 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Prosser BL, Wright NT, Hernandez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF (2008) S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J Biol Chem 283(8):5046–5057.  https://doi.org/10.1074/jbc.M709231200 CrossRefPubMedGoogle Scholar
  7. 7.
    Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ (2008) S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem 283(39):26676–26683.  https://doi.org/10.1074/jbc.M804432200 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cannon BR, Zimmer DB, Weber DJ (2011) S100A1 (S100 calcium binding protein A1). Atlas Genet Cytogenet Oncol Haematol 15(10):873–876.  https://doi.org/10.4267/2042/46035 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, Coussens NP (2016) Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 4(2):022001.  https://doi.org/10.1088/2050-6120/4/2/022001 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang X, Aulabaugh A (2016) Application of fluorescence polarization in HTS assays. Methods Mol Biol 1439:115–130.  https://doi.org/10.1007/978-1-4939-3673-1_7 CrossRefPubMedGoogle Scholar
  11. 11.
    Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, Mackerell AD, Weber DJ (2010) In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. Int J High Throughput Screen 2010(1):109–126.  https://doi.org/10.2147/IJHTS.S8210 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ivanenkov VV, Jamieson GA Jr, Gruenstein E, Dimlich RV (1995) Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. J Biol Chem 270(24):14651–14658CrossRefGoogle Scholar
  13. 13.
    Nikolovska-Coleska Z, Wang R, Fang X, Pan H, Tomita Y, Li P, Roller PP, Krajewski K, Saito NG, Stuckey JA, Wang S (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332(2):261–273.  https://doi.org/10.1016/j.ab.2004.05.055 CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paul T. Wilder
    • 1
    • 2
  • Kristen M. Varney
    • 1
    • 2
  • David J. Weber
    • 1
    • 2
    Email author
  1. 1.Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.University of Maryland Marlene and Stewart Greenebaum Comprehesive Cancer CenterBaltimoreUSA

Personalised recommendations