Advertisement

Overview of Glutamine Dependency and Metabolic Rescue Protocols

  • Shuo Qie
  • Dan He
  • Nianli SangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)

Abstract

Enhanced glutaminolysis and glycolysis are the two most remarkable biochemical features of cancer cell metabolism, reflecting increased utilization of glutamine and glucose in proliferating cells. Most solid tumors often outgrow the blood supply, resulting in a tumor microenvironment characterized by the depletion of glutamine, glucose, and oxygen. Whereas mechanisms by which cancer cells sense and metabolically adapt to hypoxia have been well characterized with a variety of cancer types, mechanisms by which different types of tumor cells respond to a dynamic change of glutamine availability and the underlying importance remains to be characterized. Here we describe the protocol, which uses cultured Hep3B cells as a model in determining glutamine-dependent proliferation, metabolite rescuing, and cellular responses to glutamine depletion. These protocols may be modified to study the metabolic roles of glutamine in other types of tumor or non-tumor cells as well.

Key words

Anaplerosis Cell proliferation Endoplasmic reticulum stress Glutamine depletion Metabolism Nitrogen anabolism 

Notes

Acknowledgment

Research in Dr. Sang’s laboratory at Drexel University are supported by grants from NCI (R01-CA129494) and the National Natural Science Foundation of China (81470134) and start-up fund from Drexel University.

References

  1. 1.
    Yin C, Qie S, Sang N (2012) Carbon source metabolism and its regulation in cancer cells. Crit Rev Eukar Gene Expr 22(1):17–35.  https://doi.org/10.1615/CritRevEukarGeneExpr.v22.i1.20CrossRefGoogle Scholar
  2. 2.
    Meng M, Chen S, Lao T, Liang D, Sang N (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9(19):3921–3932.  https://doi.org/10.4161/cc.9.19.13139CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo H-K, Jang HG, Jha AK (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350.  https://doi.org/10.1038/nature10350CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583.  https://doi.org/10.1038/nrc3557CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198.  https://doi.org/10.1016/j.tibs.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bannai S, Ishii T (1988) A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts. J Cell Physiol 137(2):360–366.  https://doi.org/10.1002/jcp.1041370221CrossRefPubMedGoogle Scholar
  7. 7.
    Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A, Hu M, Chan DA, Ethier SP, vant Veer LJ (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24(4):450–465.  https://doi.org/10.1016/j.ccr.2013.08.020CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433.  https://doi.org/10.1016/j.tibs.2010.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121.  https://doi.org/10.1016/j.cmet.2011.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(10):619–180.  https://doi.org/10.1016/j.trecan.2017.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350.  https://doi.org/10.1073/pnas.0709747104CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384.  https://doi.org/10.1038/nature10602CrossRefGoogle Scholar
  13. 13.
    Fendt S-M, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, Vokes NI, Guarente L, Vander Heiden MG, Stephanopoulos G (2013) Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Comm 4:2236.  https://doi.org/10.1038/ncomms3236CrossRefGoogle Scholar
  14. 14.
    Qie S, Liang D, Yin C, Gu W, Meng M, Wang C, Sang N (2012) Glutamine depletion and glucose depletion trigger growth inhibition via distinctive gene expression reprogramming. Cell Cycle 11(19):3679–3690.  https://doi.org/10.4161/cc.21944CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N (2015) AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 14(15):2520–2536.  https://doi.org/10.1080/15384101.2015.1055426CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen S, Sang N (2016) Hypoxia-inducible factor-1: a critical player in the survival strategy of stressed cells. J Cell Biochem 117(2):267–278.  https://doi.org/10.1002/jcb.25283CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol 15(1):551–578.  https://doi.org/10.1146/annurev.cellbio.15.1.551CrossRefGoogle Scholar
  18. 18.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95.  https://doi.org/10.1038/nrc2981CrossRefPubMedGoogle Scholar
  19. 19.
    Davie E, Forte GM, Petersen J (2015) Nitrogen regulates AMPK to control TORC1 signaling. Curr Biol 25(4):445–454.  https://doi.org/10.1016/j.cub.2014.12.034CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jewell JL, Kim YC, Russell RC, Yu F-X, Park HW, Plouffe SW, Tagliabracci VS, Guan K-L (2015) Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–198.  https://doi.org/10.1126/science.1259472CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC (2017) Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358(6365):941–946.  https://doi.org/10.1126/science.aam9305CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Sys Biol 7(1):523.  https://doi.org/10.1038/msb.2011.56CrossRefGoogle Scholar
  23. 23.
    Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci 108(8):3270–3275.  https://doi.org/10.1073/pnas.1019393108CrossRefPubMedGoogle Scholar
  24. 24.
    Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987.  https://doi.org/10.1158/0008-5472CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C, Judkins AR, Rustenburg AS, Grinaway PB, Chodera JD, Cross JR (2015) Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22(2):304–311.  https://doi.org/10.1016/j.cmet.2015.06.023CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Oldham WM, Clish CB, Yang Y, Loscalzo J (2015) Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22(2):291–303.  https://doi.org/10.1016/j.cmet.2015.06.021CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Quent V, Loessner D, Friis T, Reichert JC, Hutmacher DW (2010) Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 14(4):1003–1013.  https://doi.org/10.1111/j.1582-4934.2010.01013.xCrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang P, Henning SM, Heber D (2010) Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One 16(4):e10202.  https://doi.org/10.1371/journal.pone.0010202CrossRefGoogle Scholar
  29. 29.
    Jones LJ, Gray M, Yue ST, Haugland RP, Singer VL (2001) Sensitive determination of cell number using the CyQUANT® cell proliferation assay. J Immunol Meth 254(1-2):85–98.  https://doi.org/10.1016/S0022-1759(01)00404-5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyCollege of Arts and Sciences, Drexel UniversityPhiladelphiaUSA
  2. 2.Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonUSA
  3. 3.Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations