Imaging Cancer Metabolism with Positron Emission Tomography (PET)

  • Timothy H. Witney
  • David Y. LewisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)


Positron emission tomography (PET) enables the noninvasive spatiotemporal analysis of cancer metabolism in vivo. Both natural and nonnatural PET tracers have been developed to assess metabolic pathways during tumorigenesis, cancer progression, and metastasis. Here we describe the dynamic in vivo PET/CT imaging of the glucose analogue [18F]fluoro-2-deoxy-d-glucose (FDG), taking into consideration the methodology for alternative metabolic PET substrates.

Key words

Fluorodeoxyglucose FDG Positron emission tomography PET Mouse Imaging Carbon-11 Fluorine-18 


  1. 1.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear M (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42(2):328–354. Scholar
  2. 2.
    Lewis DY, Soloviev D, Brindle KM (2015) Imaging tumor metabolism using positron emission tomography. Cancer J 21(2):129–136. Scholar
  3. 3.
    Lewis DY, Boren J, Shaw GL, Bielik R, Ramos-Montoya A, Larkin TJ, Martins CP, Neal DE, Soloviev D, Brindle KM (2014) Late imaging with [1-11C]acetate improves detection of tumor fatty acid synthesis with PET. J Nucl Med 55(7):1144–1149. Scholar
  4. 4.
    Gengenbacher N, Singhal M, Augustin HG (2017) Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17(12):751–765. Scholar
  5. 5.
    Osborne DR, Kuntner C, Berr S, Stout D (2017) Guidance for efficient small animal imaging quality control. Mol Imaging Biol 19(4):485–498. Scholar
  6. 6.
    Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47(6):999–1006Google Scholar
  7. 7.
    Yagi M, Arentsen L, Shanley RM, Hui SK (2014) High-throughput multiple-mouse imaging with micro-PET/CT for whole-skeleton assessment. Phys Med 30(7):849–853. Scholar
  8. 8.
    Flores JE, McFarland LM, Vanderbilt A, Ogasawara AK, Williams SP (2008) The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imag Biol 10(4):192–200. Scholar
  9. 9.
    Woo S-K, Lee TS, Kim KM, Kim J-Y, Jung JH, Kang JH, Cheon GJ, Choi CW, Lim SM (2008) Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35(1):143–150. Scholar
  10. 10.
    Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2(12).
  11. 11.
    Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11S–20S. Scholar
  12. 12.
    Hirota J, Shimizu S (2012) Chapter 5.2 - routes of administration A2 - Hedrich, Hans J. In: The laboratory mouse, 2nd edn. Academic Press, Boston, pp 709–725. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Imaging Chemistry and BiologyKing’s College LondonLondonUK
  2. 2.Molecular Imaging LaboratoryCancer Research UK Beatson InstituteGlasgowUK
  3. 3.Institute of Cancer Sciences, University of GlasgowGlasgowUK

Personalised recommendations