Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging

  • Thomas S. BlackerEmail author
  • Michael D. E. Sewell
  • Gyorgy Szabadkai
  • Michael R. Duchen
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)


Altered metabolism is a hallmark of cancer, both resulting from and driving oncogenesis. The NAD and NADP redox couples play a key role in a large number of the metabolic pathways involved. In their reduced forms, NADH and NADPH, these molecules are intrinsically fluorescent. As the average time for fluorescence to be emitted following excitation by a laser pulse, the fluorescence lifetime, is exquisitely sensitive to changes in the local environment of the fluorophore, imaging the fluorescence lifetime of NADH and NADPH offers the potential for label-free monitoring of metabolic changes inside living tumors. Here, we describe the biological, photophysical, and methodological considerations required to establish fluorescence lifetime imaging (FLIM) of NAD(P)H as a routine method for profiling the metabolism of living cancer cells and tissues.

Key words

NADH NADPH Autofluorescence Fluorescence lifetime imaging Live-cell microscopy Cancer metabolism 


  1. 1.
    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kim J, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324(80):1029–1033PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Duchen MR, Szabadkai G (2010) Roles of mitochondria in human disease. Essays Biochem 47:115–137CrossRefGoogle Scholar
  7. 7.
    Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weinhouse S (1976) The Warburg hypothesis fifty years later. Zeitschrift für Krebsforsch und Klin Onkol 87:115–126Google Scholar
  10. 10.
    Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434CrossRefGoogle Scholar
  11. 11.
    Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson ARA (2015) Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res 75:1567–1579PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Granger A, Mott R, Emambokus N (2016) Hacking cancer metabolism. Cell Metab 24:643–644PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sosa V, Moliné T, Somoza R et al (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tomiyama A, Serizawa S, Tachibana K et al (2006) Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak. J Natl Cancer Inst 98:1462–1473PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shlomi T, Benyamini T, Gottlieb E et al (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol 7:e1002018PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(80):1340–1344PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Maddocks ODK, Berkers CR, Mason SM et al (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–546PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    De Ruyck JJ, Famerée M, Wouters J et al (2007) Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity. Chem Phys Lett 450:119–122CrossRefGoogle Scholar
  31. 31.
    Blacker TS, Marsh RJ, Duchen MR, Bain AJ (2013) Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH. Chem Phys 422:184–194CrossRefGoogle Scholar
  32. 32.
    Patterson GH, Knobel SM, Arkhammar P et al (2000) Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci U S A 97:5203–5207PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mayevsky A, Chance B (2007) Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7:330–339PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137(80):499–508PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Duchen MR, Surin A, Jacobson J (2003) Imaging mitochondrial function in intact cells. Methods Enzymol 361:353–389CrossRefGoogle Scholar
  36. 36.
    Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Meijers R, Morris RJ, Adolph HW et al (2001) On the enzymatic activation of NADH. J Biol Chem 276:9316–9321PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Blacker TS, Mann ZF, Gale JE et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schneckenburger H, Koenig K (1992) Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators. Opt Eng 31:1447–1451CrossRefGoogle Scholar
  40. 40.
    Paul RJ, Schneckenburger H (1996) Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy. Naturwissenschaften 83:32–35PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Pradhan A, Pal P, Durocher G et al (1995) Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J Photochem Photobiol B Biol 31:101–112CrossRefGoogle Scholar
  42. 42.
    Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–8773PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Skala MC, Riching KM, Bird DK et al (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:24014CrossRefGoogle Scholar
  44. 44.
    McGinty J, Galletly NP, Dunsby C et al (2010) Wide-field fluorescence lifetime imaging of cancer. Biomed Opt Express 1:627–640PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Adur J, Pelegati VB, Bianchi M, et al (2013) Multimodal nonlinear optical microscopy used to discriminate human colon cancer. In: Multiphoton microscopy in the biomedical sciences XIII. International Society for Optics and Photonics, p 85881JGoogle Scholar
  46. 46.
    Rueck AC, Hauser C, Mosch S, Kalinina S (2014) Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells. J Biomed Opt 19:96005CrossRefGoogle Scholar
  47. 47.
    Wang Y, Song C, Wang M et al (2016) Rapid, label-free, and highly sensitive detection of cervical cancer with fluorescence lifetime imaging microscopy. IEEE J Sel Top Quantum Electron 22:228–234CrossRefGoogle Scholar
  48. 48.
    Awasthi K, Moriya D, Nakabayashi T et al (2016) Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging. J Photochem Photobiol B Biol 165:256–265CrossRefGoogle Scholar
  49. 49.
    Pastore MN, Studier H, Bonder CS, Roberts MS (2017) Non-invasive metabolic imaging of melanoma progression. Exp Dermatol 26:607–614PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Phillips D, Drake RC, O’Connor D V, Christensen RL (1985) Time correlated single-photon counting (TCSPC) using laser excitationGoogle Scholar
  51. 51.
    Bain AJ (2015) Multiphoton Processes. In: Photonics. John Wiley & Sons, Inc., Hoboken, NJ, pp 279–320Google Scholar
  52. 52.
    Moulton PF (1986) Spectroscopic and laser characteristics of Ti:Al2O3. JOSAB 3:125–133CrossRefGoogle Scholar
  53. 53.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Schneckenburger H, Wagner M, Weber P et al (2004) Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J Fluoresc 14:649–654PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Webb RH (1996) Confocal optical microscopy. Reports Prog Phys 59:427CrossRefGoogle Scholar
  56. 56.
    Le Grand Y, Leray A, Guilbert T, Odin C (2008) Non-descanned versus descanned epifluorescence collection in two-photon microscopy: experiments and Monte Carlo simulations. Opt Commun 281:5480–5486CrossRefGoogle Scholar
  57. 57.
    Becker W, Bergmann A, Hink MA et al (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Becker W, Su B, Holub O (2011) FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech 74:804–811PubMedPubMedCentralGoogle Scholar
  59. 59.
    Becker W, Bergmann A, Biskup C (2007) Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70:403–409PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, New York, pp 105–116CrossRefGoogle Scholar
  62. 62.
    Wahl P (1979) Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem 10:91–104PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Moger J, Gribbon P, Sewing A, Winlove CP (2006) The application of fluorescence lifetime readouts in high-throughput screening. J Biomol Screen 11:765–772PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tiede LM, Nichols MG (2006) Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy. Photochem Photobiol 82:656–664PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134:371–378CrossRefGoogle Scholar
  66. 66.
    Laurence TA, Chromy BA (2010) Efficient maximum likelihood estimator fitting of histograms. Nat Methods 7:338PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Turton DA, Reid GD, Beddard GS (2003) Accurate analysis of fluorescence decays from single molecules in photon counting experiments. Anal Chem 75:4182–4187PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Maus M, Cotlet M, Hofkens J et al (2001) An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem 73:2078–2086PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bajzer Ž, Therneau TM, Sharp JC, Prendergast FG (1991) Maximum likelihood method for the analysis of time-resolved fluorescence decay curves. Eur Biophys J 20:247–262CrossRefGoogle Scholar
  70. 70.
    Warren SC, Margineanu A, Alibhai D et al (2013) Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS One 8:e70687PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Livesey AK, Brochon JC (1987) Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J 52:693–706PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Brochon J-C (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. In: Methods in enzymology. Elsevier, Amsterdam, pp 262–311Google Scholar
  73. 73.
    Rowley MI, Coolen ACC, Vojnovic B, Barber PR (2016) Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging. PLoS One 11:e0158404PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rowley MI, Barber PR, Coolen ACC, Vojnovic B (2011) Bayesian analysis of fluorescence lifetime imaging data. In: Multiphoton microscopy in the biomedical sciences XI. International Society for Optics and Photonics, p 790325Google Scholar
  75. 75.
    O’Shea P (2012) Future medicine shaped by an interdisciplinary new biology. Lancet 379:1544–1550PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Plotegher N, Stringari C, Jahid S et al (2015) NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells. FASEB J 29:2484–2494PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Stringari C, Cinquin A, Cinquin O et al (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci 108:13582–13587PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Stringari C, Edwards RA, Pate KT et al (2012) Metabolic trajectory of cellular differentiation in small intestine by Phasor fluorescence lifetime microscopy of NADH. Sci Rep 2Google Scholar
  80. 80.
    Talbot CB, Patalay R, Munro I et al (2011) Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging. Opt Express 19:13848–13861PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Czochralska B, Lindqvist L (1983) Diphotonic one-electron oxidation of NADH on laser excitation at 353 nm. Chem Phys Lett 101:297–299CrossRefGoogle Scholar
  82. 82.
    Walsh AJ, Cook RS, Sanders ME et al (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74:5184–5194PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kawano H, Nabekawa Y, Suda A et al (2003) Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem Biophys Res Commun 311:592–596PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Salthammer T (1992) Numerical simulation of pile-up distorted time-correlated single photon counting (TCSPC) data. J Fluoresc 2:23–27PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Tosatto A, Sommaggio R, Kummerow C et al (2016) The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med 8:569–585PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Baffou G, Rigneault H, Marguet D, Jullien L (2014) A critique of methods for temperature imaging in single cells. Nat Methods 11:899PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Cracan V, Titov DV, Shen H et al (2017) A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Nat Chem Biol 13:1088PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guo H-W, Yu J-S, Hsu S-H et al (2015) Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell. J Biomed Opt 20:17004CrossRefGoogle Scholar
  89. 89.
    Schaefer PM, Hilpert D, Niederschweiberer M et al (2017) Mitochondrial matrix pH as a decisive factor in neurometabolic imaging. Neurophotonics 4:45004CrossRefGoogle Scholar
  90. 90.
    Sun Y, Phipps J, Elson DS et al (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    De Beule PA, Dunsby C, Galletly NP et al (2007) A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev Sci Instrum 78:123101PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Butte PV, Pikul BK, Hever A et al (2005) Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J Biomed Opt 10:64026–64029CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thomas S. Blacker
    • 1
    • 2
    • 3
    Email author
  • Michael D. E. Sewell
    • 1
  • Gyorgy Szabadkai
    • 1
    • 2
    • 4
    • 5
  • Michael R. Duchen
    • 1
    • 2
  1. 1.Research Department of Cell & Developmental BiologyUniversity College LondonLondonUK
  2. 2.UCL Consortium for Mitochondrial ResearchUniversity College LondonLondonUK
  3. 3.Department of Physics & AstronomyUniversity College LondonLondonUK
  4. 4.The Francis Crick InstituteLondonUK
  5. 5.Department of Biomedical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations