Advertisement

Assessing Metabolic Dysregulation in Muscle During Cachexia

  • Myriam Y. Hsu
  • Paolo E. PorporatoEmail author
  • Elisabeth Wyart
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1928)

Abstract

Cancer cachexia is a metabolic disease characterized by a negative energy balance associated with systemic weight loss and poor quality of life.

In particular, skeletal muscle, which represents almost 50% of the total body mass, is strongly affected, and metabolic alterations therein (e.g., insulin resistance and mitochondrial dysfunction) can eventually support tumor growth by facilitating nutrient scavenging by the growing mass. Interestingly, metabolic interventions on wasting muscle have been proven to be protective, advocating for the importance of metabolic regulation in the wasting muscle.

Here, we will briefly define the current knowledge of metabolic regulation in cachexia and provide a protocol to grow and differentiate in vitro myotubes for the assessment of mitochondrial metabolism during cachexia.

Key words

Cachexia Muscle wasting Myotube differentiation Energy metabolism Oxygen consumption 

References

  1. 1.
    Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, Baldi P, Jacks T, Sassone-Corsi P (2016) Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165(4):896–909.  https://doi.org/10.1016/j.cell.2016.04.039CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Porporato PE (2016) Understanding cachexia as a cancer metabolism syndrome. Oncogene 5:e200.  https://doi.org/10.1038/oncsis.2016.3CrossRefGoogle Scholar
  3. 3.
    Tayek JA (1992) A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr 11(4):445–456CrossRefGoogle Scholar
  4. 4.
    Wagner EF, Petruzzelli M (2015) Cancer metabolism: a waste of insulin interference. Nature 521(7553):430–431.  https://doi.org/10.1038/521430aCrossRefPubMedGoogle Scholar
  5. 5.
    Bindels LB, Delzenne NM (2013) Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 45(10):2186–2190.  https://doi.org/10.1016/j.biocel.2013.06.021CrossRefPubMedGoogle Scholar
  6. 6.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867.  https://doi.org/10.1038/nature01322CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Argiles JM, Lopez-Soriano FJ, Busquets S (2012) Counteracting inflammation: a promising therapy in cachexia. Crit Rev Oncog 17(3):253–262.  https://doi.org/10.1615/CritRevOncog.v17.i3.30CrossRefPubMedGoogle Scholar
  8. 8.
    Mantovani G, Maccio A, Mura L, Massa E, Mudu MC, Mulas C, Lusso MR, Madeddu C, Dessi A (2000) Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med (Berl) 78(10):554–561CrossRefGoogle Scholar
  9. 9.
    Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14(11):754–762.  https://doi.org/10.1038/nrc3829CrossRefPubMedGoogle Scholar
  10. 10.
    DeWys WD (1978) Changes in taste sensation and feeding behaviour in cancer patients: a review. J Hum Nutr 32(6):447–453PubMedGoogle Scholar
  11. 11.
    Otto B, Cuntz U, Fruehauf E, Wawarta R, Folwaczny C, Riepl RL, Heiman ML, Lehnert P, Fichter M, Tschop M (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145(5):669–673PubMedGoogle Scholar
  12. 12.
    Garcia JM, Garcia-Touza M, Hijazi RA, Taffet G, Epner D, Mann D, Smith RG, Cunningham GR, Marcelli M (2005) Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab 90(5):2920–2926.  https://doi.org/10.1210/jc.2004-1788CrossRefPubMedGoogle Scholar
  13. 13.
    Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, Pot B, Martinez I, Walter J, Cani PD, Delzenne NM (2016) Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10(6):1456–1470.  https://doi.org/10.1038/ismej.2015.209CrossRefPubMedGoogle Scholar
  14. 14.
    Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563.  https://doi.org/10.1126/science.aac6468CrossRefPubMedGoogle Scholar
  15. 15.
    Lieffers JR, Mourtzakis M, Hall KD, McCargar LJ, Prado CM, Baracos VE (2009) A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Am J Clin Nutr 89(4):1173–1179.  https://doi.org/10.3945/ajcn.2008.27273CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, Zimmers TA (2011) STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6(7):e22538.  https://doi.org/10.1371/journal.pone.0022538CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Patra SK, Arora S (2012) Integrative role of neuropeptides and cytokines in cancer anorexia-cachexia syndrome. Clin Chim Acta 413(13–14):1025–1034.  https://doi.org/10.1016/j.cca.2011.12.008CrossRefPubMedGoogle Scholar
  18. 18.
    Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32(1):107–114CrossRefGoogle Scholar
  19. 19.
    Holroyde CP, Skutches CL, Boden G, Reichard GA (1984) Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res 44(12 Pt 1):5910–5913PubMedGoogle Scholar
  20. 20.
    Yoshikawa T, Noguchi Y, Doi C, Makino T, Okamoto T, Matsumoto A (1999) Insulin resistance was connected with the alterations of substrate utilization in patients with cancer. Cancer Lett 141(1–2):93–98CrossRefGoogle Scholar
  21. 21.
    Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89(2):381–410.  https://doi.org/10.1152/physrev.00016.2008CrossRefPubMedGoogle Scholar
  22. 22.
    Berriel DM, Krones-Herzig A, Metzger D, Ziegler A, Vegiopoulos A, Klingenspor M, Muller-Decker K, Herzig S (2008) Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology 48(3):782–791.  https://doi.org/10.1002/hep.22383CrossRefGoogle Scholar
  23. 23.
    Martignoni ME, Dimitriu C, Bachmann J, Krakowski-Rosen H, Ketterer K, Kinscherf R, Friess H (2009) Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol Rep 21(2):363–369PubMedGoogle Scholar
  24. 24.
    Jones A, Friedrich K, Rohm M, Schafer M, Algire C, Kulozik P, Seibert O, Muller-Decker K, Sijmonsma T, Strzoda D, Sticht C, Gretz N, Dallinga-Thie GM, Leuchs B, Kogl M, Stremmel W, Diaz MB, Herzig S (2013) TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol Med 5(2):294–308.  https://doi.org/10.1002/emmm.201201869CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14(6):804–810.  https://doi.org/10.1016/j.cmet.2011.11.004CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bishop JS, Marks PA (1959) Studies on carbohydrate metabolism in patients with neoplastic disease. II. Response to insulin administration. J Clin Invest 38(4):668–672.  https://doi.org/10.1172/JCI103845CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Inculet RI, Peacock JL, Gorschboth CM, Norton JA (1987) Gluconeogenesis in the tumor-influenced rat hepatocyte: importance of tumor burden, lactate, insulin, and glucagon. J Natl Cancer Inst 79(5):1039–1046PubMedGoogle Scholar
  28. 28.
    Bartlett DL, Charland SL, Torosian MH (1995) Reversal of tumor-associated hyperglucagonemia as treatment for cancer cachexia. Surgery 118(1):87–97CrossRefGoogle Scholar
  29. 29.
    Hartl WH, Demmelmair H, Jauch KW, Koletzko B, Schildberg FW (1998) Effect of glucagon on protein synthesis in human rectal cancer in situ. Ann Surg 227(3):390–397CrossRefGoogle Scholar
  30. 30.
    Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80(1):1–6.  https://doi.org/10.1172/JCI113033CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP (2013) Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle 4(2):89–94.  https://doi.org/10.1007/s13539-013-0111-0CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tian M, Nishijima Y, Asp ML, Stout MB, Reiser PJ, Belury MA (2010) Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol 37(2):347–353PubMedGoogle Scholar
  33. 33.
    Drott C, Lundholm K (1990) Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats. J Surg Res 49(1):62–68.  https://doi.org/10.1016/0022-4804(90)90112-FCrossRefPubMedGoogle Scholar
  34. 34.
    Mustafa I, Leverve X (2001) Metabolic and nutritional disorders in cardiac cachexia. Nutrition 17(9):756–760CrossRefGoogle Scholar
  35. 35.
    Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS (2011) NF-kappaB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178(3):1059–1068.  https://doi.org/10.1016/j.ajpath.2010.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C (2014) The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 71:43–53.  https://doi.org/10.1016/j.yjmcc.2013.11.008CrossRefPubMedGoogle Scholar
  37. 37.
    Costa G, Holland JF (1962) Effects of Krebs-2 carcinoma on the lipide metabolism of male Swiss mice. Cancer Res 22:1081–1083PubMedGoogle Scholar
  38. 38.
    Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333(6039):233–238.  https://doi.org/10.1126/science.1198973CrossRefPubMedGoogle Scholar
  39. 39.
    Das SK, Hoefler G (2013) The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 19(5):292–301.  https://doi.org/10.1016/j.molmed.2013.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wyart E, Reano S, Hsu MY, Longo DL, Li M et al (2018) Metabolic alterations in a slow-paced model of pancreatic cancer-induced wasting. Oxid Med Cell Longev 2018:6419805CrossRefGoogle Scholar
  41. 41.
    Shaw JH, Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205(4):368–376CrossRefGoogle Scholar
  42. 42.
    Argiles JM, Busquets S, Lopez-Soriano FJ (2011) Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol 668(Suppl 1):S81–S86.  https://doi.org/10.1016/j.ejphar.2011.07.007CrossRefPubMedGoogle Scholar
  43. 43.
    Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513(7516):100–104.  https://doi.org/10.1038/nature13528CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20(3):433–447.  https://doi.org/10.1016/j.cmet.2014.06.011CrossRefPubMedGoogle Scholar
  45. 45.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74.  https://doi.org/10.1038/nrd4467CrossRefPubMedGoogle Scholar
  46. 46.
    Baldanzi G, Pietronave S, Locarno D, Merlin S, Porporato P, Chianale F, Filigheddu N, Cantelmo AR, Albini A, Graziani A, Prat M (2011) Diacylglycerol kinases are essential for hepatocyte growth factor-dependent proliferation and motility of Kaposi's sarcoma cells. Cancer Sci 102(7):1329–1336.  https://doi.org/10.1111/j.1349-7006.2011.01953.xCrossRefPubMedGoogle Scholar
  47. 47.
    Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, Yuan C, Bao Y, Townsend MK, Tworoger SS, Davidson SM, Papagiannakopoulos T, Yang A, Dayton TL, Ogino S, Stampfer MJ, Giovannucci EL, Qian ZR, Rubinson DA, Ma J, Sesso HD, Gaziano JM, Cochrane BB, Liu S, Wactawski-Wende J, Manson JE, Pollak MN, Kimmelman AC, Souza A, Pierce K, Wang TJ, Gerszten RE, Fuchs CS, Vander Heiden MG, Wolpin BM (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20(10):1193–1198.  https://doi.org/10.1038/nm.3686CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Petruzzelli M, Wagner EF (2016) Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev 30(5):489–501.  https://doi.org/10.1101/gad.276733.115CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fong Y, Moldawer LL, Marano M, Wei H, Barber A, Manogue K, Tracey KJ, Kuo G, Fischman DA, Cerami A et al (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256(3 Pt 2):R659–R665.  https://doi.org/10.1152/ajpregu.1989.256.3.R659CrossRefPubMedGoogle Scholar
  50. 50.
    Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino FM (2005) Ca(2+)-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 37(10):2134–2146.  https://doi.org/10.1016/j.biocel.2005.03.010CrossRefPubMedGoogle Scholar
  51. 51.
    Baracos VE, DeVivo C, Hoyle DH, Goldberg AL (1995) Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268(5 Pt 1):E996–E1006PubMedGoogle Scholar
  52. 52.
    Aversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, Colasante G, Tirone A, Rossi Fanelli F, Ramaccini C, Costelli P, Muscaritoli M (2016) Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep 6:30340.  https://doi.org/10.1038/srep30340CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pin F, Minero VG, Penna F, Muscaritoli M, De Tullio R, Baccino FM, Costelli P (2017) Interference with Ca(2+)-dependent proteolysis does not alter the course of muscle wasting in experimental cancer cachexia. Front Physiol 8:213.  https://doi.org/10.3389/fphys.2017.00213CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Segatto M, Fittipaldi R, Pin F, Sartori R, Dae Ko K, Zare H, Fenizia C, Zanchettin G, Pierobon ES, Hatakeyama S, Sperti C, Merigliano S, Sandri M, Filippakopoulos P, Costelli P, Sartorelli V, Caretti G (2017) Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun 8(1):1707.  https://doi.org/10.1038/s41467-017-01645-7CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16(2):153–166.  https://doi.org/10.1016/j.cmet.2012.06.011CrossRefPubMedGoogle Scholar
  56. 56.
    Dowling P, Murphy S, Ohlendieck K (2016) Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 13(8):783–799.  https://doi.org/10.1080/14789450.2016.1209416CrossRefPubMedGoogle Scholar
  57. 57.
    Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103(44):16260–16265.  https://doi.org/10.1073/pnas.0607795103CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45(10):2191–2199.  https://doi.org/10.1016/j.biocel.2013.05.016CrossRefPubMedGoogle Scholar
  59. 59.
    Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331.  https://doi.org/10.1016/j.cell.2012.10.050CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tzika AA, Fontes-Oliveira CC, Shestov AA, Constantinou C, Psychogios N, Righi V, Mintzopoulos D, Busquets S, Lopez-Soriano FJ, Milot S, Lepine F, Mindrinos MN, Rahme LG, Argiles JM (2013) Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. Int J Oncol 43(3):886–894.  https://doi.org/10.3892/ijo.2013.1998CrossRefPubMedGoogle Scholar
  61. 61.
    McLean JB, Moylan JS, Andrade FH (2014) Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 5:503.  https://doi.org/10.3389/fphys.2014.00503CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Julienne CM, Dumas JF, Goupille C, Pinault M, Berri C, Collin A, Tesseraud S, Couet C, Servais S (2012) Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. J Cachexia Sarcopenia Muscle 3(4):265–275.  https://doi.org/10.1007/s13539-012-0071-9CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, Qian CN, Ong P, Li Z, Chen S, Mak SY, Lim WJ, Kanayama HO, Mohan RE, Wang RR, Lai JH, Chua C, Ong HS, Tan KK, Ho YS, Tan IB, Teh BT, Shyh-Chang N (2016) Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med 22(6):666–671.  https://doi.org/10.1038/nm.4093CrossRefPubMedGoogle Scholar
  64. 64.
    Das S, Morvan F, Jourde B, Meier V, Kahle P, Brebbia P, Toussaint G, Glass DJ, Fornaro M (2015) ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab 21(6):868–876.  https://doi.org/10.1016/j.cmet.2015.05.006CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Myriam Y. Hsu
    • 1
  • Paolo E. Porporato
    • 1
    Email author
  • Elisabeth Wyart
    • 1
  1. 1.Department of Molecular Biotechnology and Health ScienceMolecular Biotechnology Center, University of TorinoTorinoItaly

Personalised recommendations