Recombinant Protein Production in Yeast pp 187-209 | Cite as
Analyzing Recombinant Protein Production in Pichia pastoris with Targeted Proteomics
Protocol
First Online:
Abstract
New mass spectrometry approaches enable antibody-independent tracking of protein production. Herein, we outline an antibody-independent mass spectrometry method for tracking recombinant protein production in the methylotrophic yeast Pichia pastoris system.
Key words
Multiple reaction monitoring Mass spectrometry MRM-MS Yeast Recombinant protein production ZIPK DAPK3Notes
Acknowledgments
This work was supported by grants from the Canadian Institutes of Health Research (CIHR, MOP#133543 to JAM), the European Commission Research Executive Agency (Marie Sklodowska-Curie International Incoming Fellowship to JAM and RMB), and the Biotechnology and Biological Sciences Research Council (International Partnering Award BB/P025927/1 to JAM and RMB).
References
- 1.Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34. https://doi.org/10.1038/nmeth.2309 CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15(18):3193–3208. https://doi.org/10.1002/pmic.201500004 CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Chen YT, Chen HW, Wu CF et al (2017) Development of a multiplexed liquid chromatrography multiple-reaction monitoring mass spectrometry (LC-MRM/MS) method for evaluaiton of salivary proteins as oral cancer biomarkers. Mol Cell Proteomics 16(5):799–811. https://doi.org/10.1074/mcp.M116.064758 CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Bill RM (ed) (2012) Recombinant protein production in yeast—methods and protocols. In: Methods in molecular biology. New York: Human PressGoogle Scholar
- 5.MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. https://doi.org/10.1093/bioinformatics/btq054 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Pino LK, Searle BC, Bollinger JG et al (2017) The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. https://doi.org/10.1002/mas.21540
- 7.Carlson DA, Franke AS, Weitzel DH et al (2013) Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 8(12):2715–2723. https://doi.org/10.1021/cb400407c CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Jung S, Danziger SA, Panchaud A, von Haller P, Aitchison JD, Goodlett DR (2015) Systematic analysis of yeast proteome reveals peptide detectability factors for mass spectrometry. J Proteomics Bioinform 8(10):231–239. https://doi.org/10.4172/jpb.1000374 CrossRefPubMedPubMedCentralGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019