Advertisement

Detection and Elimination of Cellular Bottlenecks in Protein-Producing Yeasts

  • Richard J. Zahrl
  • Brigitte Gasser
  • Diethard Mattanovich
  • Pau FerrerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1923)

Abstract

Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented.

Key words

Yeasts Protein production Secretion Chaperones Protein degradation Metabolism Promoters 

Notes

Acknowledgments

Work in the group of Pau Ferrer has been supported by the project CTQ2016-74959-R (AEI/FEDER, UE) of the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), and the Catalan Government (Research Group 2017-SGR-1462 and Xarxa de Referència en Biotecnologia).

Research on yeast protein production at BOKU is supported by the Austrian Science Fund (FWF): Doctoral Program BioToP—Biomolecular Technology of Proteins (FWF W1224), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, the Government of Lower Austria and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG (RZ, BG, DM), and by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs (BMDW) and the National Foundation for Research, Technology and Development (BG).

References

  1. 1.
    Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Expression of a human gene for interferon in yeast. Nature 293(5835):717–722CrossRefGoogle Scholar
  2. 2.
    Weber JM, Ponti CG, Kappeli O, Reiser J (1992) Factors affecting homologous overexpression of the Saccharomyces cerevisiae lanosterol 14 alpha-demethylase gene. Yeast 8(7):519–533.  https://doi.org/10.1002/yea.320080704CrossRefPubMedGoogle Scholar
  3. 3.
    Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KW, Gelfand DH, Holland JP, Meade JH (1985) Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228(4695):21–26.  https://doi.org/10.1126/science.228.4695.21CrossRefPubMedGoogle Scholar
  4. 4.
    Butt TR, Sternberg EJ, Gorman JA, Clark P, Hamer D, Rosenberg M, Crooke ST (1984) Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci U S A 81(11):3332–3336CrossRefGoogle Scholar
  5. 5.
    Stepien PP, Brousseau R, Wu R, Narang S, Thomas DY (1983) Synthesis of a human insulin gene. VI. Expression of the synthetic proinsulin gene in yeast. Gene 24(2–3):289–297CrossRefGoogle Scholar
  6. 6.
    Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15(9):3859–3876CrossRefGoogle Scholar
  7. 7.
    Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150(4):519–529.  https://doi.org/10.1016/j.jbiotec.2010.09.957CrossRefPubMedGoogle Scholar
  8. 8.
    Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D (2013) Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Factories 12:5.  https://doi.org/10.1186/1475-2859-12-5CrossRefGoogle Scholar
  9. 9.
    Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser B, Marx H (2017) GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst Biol 11(1):123.  https://doi.org/10.1186/s12918-017-0492-3CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B (2015) Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 16:167.  https://doi.org/10.1186/s12864-015-1393-8CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5(2):172–186.  https://doi.org/10.1021/acssynbio.5b00199CrossRefPubMedGoogle Scholar
  12. 12.
    Ho PW, Klein M, Futschik M, Nevoigt E (2018) Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. FEMS Yeast Res 18(3).  https://doi.org/10.1093/femsyr/foy019
  13. 13.
    Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683.  https://doi.org/10.1073/pnas.0504604102CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58.  https://doi.org/10.1002/biot.201200120CrossRefPubMedGoogle Scholar
  15. 15.
    Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36(12):e76.  https://doi.org/10.1093/nar/gkn369CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ata O, Prielhofer R, Gasser B, Mattanovich D, Calik P (2017) Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng 114(10):2319–2327.  https://doi.org/10.1002/bit.26363CrossRefPubMedGoogle Scholar
  17. 17.
    Leavitt JM, Tong A, Tong J, Pattie J, Alper HS (2016) Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae. Biotechnol J 11(7):866–876.  https://doi.org/10.1002/biot.201600029CrossRefPubMedGoogle Scholar
  18. 18.
    Blazeck J, Reed B, Garg R, Gerstner R, Pan A, Agarwala V, Alper HS (2013) Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol 97(7):3037–3052.  https://doi.org/10.1007/s00253-012-4421-5CrossRefPubMedGoogle Scholar
  19. 19.
    Trassaert M, Vandermies M, Carly F, Denies O, Thomas S, Fickers P, Nicaud JM (2017) New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microb Cell Factories 16(1):141.  https://doi.org/10.1186/s12934-017-0755-0CrossRefGoogle Scholar
  20. 20.
    Rantasalo A, Czeizler E, Virtanen R, Rousu J, Lahdesmaki H, Penttila M, Jantti J, Mojzita D (2016) Synthetic transcription amplifier system for orthogonal control of gene expression in Saccharomyces cerevisiae. PLoS One 11(2):e0148320.  https://doi.org/10.1371/journal.pone.0148320CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sunga AJ, Tolstorukov I, Cregg JM (2008) Posttransformational vector amplification in the yeast Pichia pastoris. FEMS Yeast Res 8(6):870–876.  https://doi.org/10.1111/j.1567-1364.2008.00410.xCrossRefPubMedGoogle Scholar
  22. 22.
    Gatzke R, Weydemann U, Janowicz ZA, Hollenberg CP (1995) Stable multicopy integration of vector sequences in Hansenula polymorpha. Appl Microbiol Biotechnol 43(5):844–849CrossRefGoogle Scholar
  23. 23.
    Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66(8):3283–3289CrossRefGoogle Scholar
  24. 24.
    Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18(2):97–113.  https://doi.org/10.1002/1097-0061(20010130)18:2<97::aid-yea652>3.0.co;2-uCrossRefPubMedGoogle Scholar
  25. 25.
    Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4(2):185–193CrossRefGoogle Scholar
  26. 26.
    Camara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P (2017) Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 7:44302.  https://doi.org/10.1038/srep44302CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aw R, Polizzi KM (2013) Can too many copies spoil the broth? Microb Cell Factories 12:128.  https://doi.org/10.1186/1475-2859-12-128CrossRefGoogle Scholar
  28. 28.
    Hamilton R, Watanabe CK, de Boer HA (2018) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 15(8):3581–3593.  https://doi.org/10.1093/nar/15.8.3581CrossRefGoogle Scholar
  29. 29.
    Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS (2015) Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol 4(7):824–832.  https://doi.org/10.1021/sb5003357CrossRefPubMedGoogle Scholar
  30. 30.
    Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a “terminatome” toolbox. ACS Synth Biol 2(6):337–347.  https://doi.org/10.1021/sb300116yCrossRefPubMedGoogle Scholar
  31. 31.
    Curran KA, Karim AS, Gupta A, Alper HS (2013) Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng 19:88–97.  https://doi.org/10.1016/j.ymben.2013.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261CrossRefGoogle Scholar
  33. 33.
    Vigentini I, Brambilla L, Branduardi P, Merico A, Porro D, Compagno C (2005) Heterologous protein production in Zygosaccharomyces bailii: physiological effects and fermentative strategies. FEMS Yeast Res 5(6–7):647–652.  https://doi.org/10.1016/j.femsyr.2004.11.006CrossRefPubMedGoogle Scholar
  34. 34.
    Cos O, Resina D, Ferrer P, Montesinos JL, Valero F (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26(2–3):86–94.  https://doi.org/10.1016/j.bej.2005.04.005CrossRefGoogle Scholar
  35. 35.
    Heyland J, Fu J, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 107(2):357–368.  https://doi.org/10.1002/bit.22836CrossRefPubMedGoogle Scholar
  36. 36.
    Gorgens JF, van Zyl WH, Knoetze JH, Hahn-Hagerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73(3):238–245CrossRefGoogle Scholar
  37. 37.
    Krogh AM, Beck V, Christensen LH, Henriksen CM, Moller K, Olsson L (2008) Adaptation of Saccharomyces cerevisiae expressing a heterologous protein. J Biotechnol 137(1–4):28–33.  https://doi.org/10.1016/j.jbiotec.2008.07.1787CrossRefPubMedGoogle Scholar
  38. 38.
    Kazemi Seresht A, Palmqvist EA, Schluckebier G, Pettersson I, Olsson L (2013) The challenge of improved secretory production of active pharmaceutical ingredients in Saccharomyces cerevisiae: a case study on human insulin analogs. Biotechnol Bioeng 110(10):2764–2774.  https://doi.org/10.1002/bit.24928CrossRefPubMedGoogle Scholar
  39. 39.
    Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664.  https://doi.org/10.1016/j.tibtech.2016.02.010CrossRefPubMedGoogle Scholar
  40. 40.
    Heyland J, Fu J, Blank LM, Schmid A (2011) Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 108(8):1942–1953.  https://doi.org/10.1002/bit.23114CrossRefPubMedGoogle Scholar
  41. 41.
    Gorgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hagerdal B (2005) Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res 5(6–7):677–683.  https://doi.org/10.1016/j.femsyr.2004.12.003CrossRefPubMedGoogle Scholar
  42. 42.
    Gorgens JF, van Zyl WH, Knoetze JH, Hahn-Hagerdal B (2005) Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium. Appl Microbiol Biotechnol 67(5):684–691.  https://doi.org/10.1007/s00253-004-1803-3CrossRefPubMedGoogle Scholar
  43. 43.
    Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Kollensperger G, Mattanovich D, Gasser B (2012) Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 52(9):2000–2012.  https://doi.org/10.1016/j.freeradbiomed.2012.02.048CrossRefPubMedGoogle Scholar
  44. 44.
    Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microb Cell Factories 11:57.  https://doi.org/10.1186/1475-2859-11-57CrossRefGoogle Scholar
  45. 45.
    Jordà J, Rojas HC, Carnicer M, Wahl A, Ferrer P, Albiol J (2014) Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites 4(2):281–299.  https://doi.org/10.3390/metabo4020281CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Klein T, Lange S, Wilhelm N, Bureik M, Yang TH, Heinzle E, Schneider K (2014) Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe—a quantitative approach using 13C-based metabolic flux analysis. Metab Eng 21:34–45.  https://doi.org/10.1016/j.ymben.2013.11.001CrossRefPubMedGoogle Scholar
  47. 47.
    Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 67(3):261–279CrossRefGoogle Scholar
  48. 48.
    Maurer M, Kuhleitner M, Gasser B, Mattanovich D (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Factories 5:37CrossRefGoogle Scholar
  49. 49.
    Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, Mattanovich D (2014) In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response. Biotechnol J 9(4):511–525.  https://doi.org/10.1002/biot.201300334CrossRefPubMedGoogle Scholar
  50. 50.
    Ferrer P, Albiol J (2014) 13C-based metabolic flux analysis of recombinant Pichia pastoris. Methods Mol Biol 1191:291–313.  https://doi.org/10.1007/978-1-4939-1170-7_17CrossRefPubMedGoogle Scholar
  51. 51.
    Klein T, Niklas J, Heinzle E (2015) Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol 42(3):453–464.  https://doi.org/10.1007/s10295-014-1569-2CrossRefPubMedGoogle Scholar
  52. 52.
    Jordà J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Syst Biol 7:17.  https://doi.org/10.1186/1752-0509-7-17CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Russmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng 24:129–138.  https://doi.org/10.1016/j.ymben.2014.05.011CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mattanovich D, Sauer M, Gasser B (2017) Industrial microorganisms: Pichia pastoris. Chapter 19. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/9783527807796.ch19CrossRefGoogle Scholar
  55. 55.
    Nocon J, Steiger M, Mairinger T, Hohlweg J, Russmayer H, Hann S, Gasser B, Mattanovich D (2016) Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol 100(13):5955–5963.  https://doi.org/10.1007/s00253-016-7363-5CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tomàs-Gamisans T (2017) Developing strategies for systems metabolic engineering of Pichia pastoris. PhD thesis, Universitat Autònoma de BarcelonaGoogle Scholar
  57. 57.
    Carnicer M (2012) Systematic metabolic analysis of recombinant Pichia pastoris under different oxygen conditions. PhD thesis, Universitat Autònoma de BarcelonaGoogle Scholar
  58. 58.
    Carnicer M, Ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P (2012) Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Factories 11:83.  https://doi.org/10.1186/1475-2859-11-83CrossRefGoogle Scholar
  59. 59.
    Russmayer H (2015) The impact of amino acid metabolism on recombinant protein production in Pichia pastoris. PhD thesis, BOKU University of Natural Resources and Life Sciences ViennaGoogle Scholar
  60. 60.
    Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14(1):47–58.  https://doi.org/10.1016/j.ymben.2011.11.002CrossRefPubMedGoogle Scholar
  61. 61.
    Kauffman KJ, Pridgen EM, Doyle FJ 3rd, Dhurjati PS, Robinson AS (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog 18(5):942–950.  https://doi.org/10.1021/bp025518gCrossRefPubMedGoogle Scholar
  62. 62.
    Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85(4):367–375.  https://doi.org/10.1002/bit.10904CrossRefPubMedGoogle Scholar
  63. 63.
    Whyteside G, Alcocer MJ, Kumita JR, Dobson CM, Lazarou M, Pleass RJ, Archer DB (2011) Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris. PLoS One 6(7):e22692.  https://doi.org/10.1371/journal.pone.0022692CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    de Ruijter JC, Koskela EV, Nandania J, Frey AD, Velagapudi V (2018) Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach. Yeast 35(4):331–341.  https://doi.org/10.1002/yea.3298CrossRefPubMedGoogle Scholar
  65. 65.
    Hou J, Osterlund T, Liu Z, Petranovic D, Nielsen J (2012) Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-012-4596-9CrossRefGoogle Scholar
  66. 66.
    Valkonen M, Penttila M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2065–2072CrossRefGoogle Scholar
  67. 67.
    Valkonen M, Ward M, Wang H, Penttilä M, Saloheimo M (2003) Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69(12):6979–6986CrossRefGoogle Scholar
  68. 68.
    Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94(2):353–361.  https://doi.org/10.1002/bit.20851CrossRefPubMedGoogle Scholar
  69. 69.
    Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Factories 9:49.  https://doi.org/10.1186/1475-2859-9-49CrossRefGoogle Scholar
  70. 70.
    Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M (2014) Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. New Biotechnol 31(6):538–552.  https://doi.org/10.1016/j.nbt.2014.02.009CrossRefGoogle Scholar
  71. 71.
    Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258CrossRefGoogle Scholar
  72. 72.
    Graf A, Gasser B, Dragosits M, Sauer M, Leparc GG, Tuchler T, Kreil DP, Mattanovich D (2008) Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics 9:390.  https://doi.org/10.1186/1471-2164-9-390CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Moon HY, Cheon SA, Kim H, Agaphonov MO, Kwon O, Oh DB, Kim JY, Kang HA (2015) Hansenula polymorpha Hac1p is critical to protein N-glycosylation activity modulation, as revealed by functional and transcriptomic analyses. Appl Environ Microbiol 81(20):6982–6993.  https://doi.org/10.1128/aem.01440-15CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187(4):525–536.  https://doi.org/10.1083/jcb.200907074CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    de Ruijter JC, Koskela EV, Frey AD (2016) Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Factories 15:87.  https://doi.org/10.1186/s12934-016-0488-5CrossRefGoogle Scholar
  76. 76.
    Koskela EV, de Ruijter JC, Frey AD (2017) Following nature’s roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 12(8).  https://doi.org/10.1002/biot.201600631CrossRefGoogle Scholar
  77. 77.
    Guerfal M, Claes K, Knittelfelder O, De Rycke R, Kohlwein SD, Callewaert N (2013) Enhanced membrane protein expression by engineering increased intracellular membrane production. Microb Cell Factories 12:122.  https://doi.org/10.1186/1475-2859-12-122CrossRefGoogle Scholar
  78. 78.
    Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H (2014) Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 98(18):7671–7698.  https://doi.org/10.1007/s00253-014-5948-4CrossRefPubMedGoogle Scholar
  79. 79.
    Hirz M, Richter G, Leitner E, Wriessnegger T, Pichler H (2013) A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase alpha3beta1 isoform. Appl Microbiol Biotechnol 97(21):9465–9478.  https://doi.org/10.1007/s00253-013-5156-7CrossRefPubMedGoogle Scholar
  80. 80.
    Fitzgerald I, Glick BS (2014) Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microb Cell Factories 13(1):125.  https://doi.org/10.1186/s12934-014-0125-0CrossRefGoogle Scholar
  81. 81.
    Zahrl RJ, Mattanovich D, Gasser B (2018) The impact of ERAD on recombinant protein secretion in Pichia pastoris (syn Komagataella spp.). Microbiology 164(4):453–463.  https://doi.org/10.1099/mic.0.000630CrossRefPubMedGoogle Scholar
  82. 82.
    Ast T, Aviram N, Chuartzman SG, Schuldiner M (2014) A cytosolic degradation pathway, prERAD, monitors pre-inserted secretory pathway proteins. J Cell Sci 127(14):3017–3023.  https://doi.org/10.1242/jcs.144386CrossRefPubMedGoogle Scholar
  83. 83.
    Toikkanen J, Sundqvist L, Keränen S (2004) Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed. Yeast 21(12):1045–1055CrossRefGoogle Scholar
  84. 84.
    Tang H, Bao X, Shen Y, Song M, Wang S, Wang C, Hou J (2015) Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol Bioeng 112(9):1872–1882.  https://doi.org/10.1002/bit.25596CrossRefPubMedGoogle Scholar
  85. 85.
    Puxbaum V, Mattanovich D, Gasser B (2015) Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 99(7):2925–2938.  https://doi.org/10.1007/s00253-015-6470-zCrossRefPubMedGoogle Scholar
  86. 86.
    Delic M, Gongrich R, Mattanovich D, Gasser B (2014) Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 21(3):414–437.  https://doi.org/10.1089/ars.2014.5844CrossRefPubMedGoogle Scholar
  87. 87.
    Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510.  https://doi.org/10.1111/j.1567-1364.2012.00810.xCrossRefPubMedGoogle Scholar
  88. 88.
    Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417.  https://doi.org/10.1007/s00253-010-2447-0CrossRefPubMedGoogle Scholar
  89. 89.
    Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113(1–3):121–135CrossRefGoogle Scholar
  90. 90.
    Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2(7):379–384.  https://doi.org/10.1038/35017001CrossRefPubMedGoogle Scholar
  91. 91.
    Pfeffer M, Maurer M, Kollensperger G, Hann S, Graf AB, Mattanovich D (2011) Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure. Microb Cell Factories 10:47.  https://doi.org/10.1186/1475-2859-10-47CrossRefGoogle Scholar
  92. 92.
    de Ruijter JC, Frey AD (2015) Analysis of antibody production in Saccharomyces cerevisiae: effects of ER protein quality control disruption. Appl Microbiol Biotechnol 99(21):9061–9071.  https://doi.org/10.1007/s00253-015-6807-7CrossRefPubMedGoogle Scholar
  93. 93.
    Bao J, Huang M, Petranovic D, Nielsen J (2017) Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae. Appl Environ Microbiol 83(14). ppi: e03400-16  https://doi.org/10.1128/aem.03400-16
  94. 94.
    Bao J, Huang M, Petranovic D, Nielsen J (2018) Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express 8(1):37.  https://doi.org/10.1186/s13568-018-0571-xCrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Connerly P, Esaki M, Montegna E, Strongin D, Levi S, Soderholm J, Glick B (2005) Sec16 is a determinant of transitional ER organization. Curr Biol 15(16):1439–1447CrossRefGoogle Scholar
  96. 96.
    Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37(6):872–914.  https://doi.org/10.1111/1574-6976.12020CrossRefPubMedGoogle Scholar
  97. 97.
    Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682.  https://doi.org/10.1016/j.devcel.2007.04.005CrossRefPubMedGoogle Scholar
  98. 98.
    Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J (2012) Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng 14(2):120–127.  https://doi.org/10.1016/j.ymben.2012.01.002CrossRefPubMedGoogle Scholar
  99. 99.
    Van Zyl JH, Den Haan R, Van Zyl WH (2014) Over-expression of native Saccharomyces cerevisiae exocytic SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 98(12):5567–5578.  https://doi.org/10.1007/s00253-014-5647-1CrossRefPubMedGoogle Scholar
  100. 100.
    Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X (2014) Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):45–52.  https://doi.org/10.1016/j.jbiosc.2013.06.017CrossRefPubMedGoogle Scholar
  101. 101.
    Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S (1997) Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast 13(4):337–351CrossRefGoogle Scholar
  102. 102.
    Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X (2017) Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae. Biotechnol Biofuels 10:53.  https://doi.org/10.1186/s13068-017-0738-8CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Van Zyl JH, Den Haan R, Van Zyl WH (2016) Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 100(1):505–518.  https://doi.org/10.1007/s00253-015-7022-2CrossRefPubMedGoogle Scholar
  104. 104.
    Sreenivas S, Krishnaiah SM, Govindappa N, Basavaraju Y, Kanojia K, Mallikarjun N, Natarajan J, Chatterjee A, Sastry KN (2015) Enhancement in production of recombinant two-chain Insulin Glargine by over-expression of Kex2 protease in Pichia pastoris. Appl Microbiol Biotechnol 99(1):327–336.  https://doi.org/10.1007/s00253-014-6052-5CrossRefPubMedGoogle Scholar
  105. 105.
    Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208.  https://doi.org/10.2217/fmb.12.133CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lee J, Park JS, Moon JY, Kim KY, Moon HM (2003) The influence of glycosylation on secretion, stability, and immunogenicity of recombinant HBV pre-S antigen synthesized in Saccharomyces cerevisiae. Biochem Biophys Res Commun 303(2):427–432CrossRefGoogle Scholar
  107. 107.
    Antebi A, Fink GR (1992) The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 3(6):633–654.  https://doi.org/10.1091/mbc.3.6.633CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Harmsen M, Bruyne M, Raué H, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365–370CrossRefGoogle Scholar
  109. 109.
    Harmsen MM, Langedijk AC, van Tuinen E, Geerse RH, Raue HA, Maat J (1993) Effect of a pmr1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba alpha-galactosidase by Saccharomyces cerevisiae. Gene 125(2):115–123CrossRefGoogle Scholar
  110. 110.
    Feng Z, Ren J, Zhang H, Zhang L (2011) Disruption of PMR1 in Kluyveromyces lactis improves secretion of calf prochymosin. J Sci Food Agric 91(1):100–103.  https://doi.org/10.1002/jsfa.4156CrossRefPubMedGoogle Scholar
  111. 111.
    Uccelletti D, Farina F, Mancini P, Palleschi C (2004) KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. J Biotechnol 109(1–2):93–101.  https://doi.org/10.1016/j.jbiotec.2003.10.037CrossRefPubMedGoogle Scholar
  112. 112.
    Agaphonov MO, Plotnikova TA, Fokina AV, Romanova NV, Packeiser AN, Kang HA, Ter-Avanesyan MD (2007) Inactivation of the Hansenula polymorpha PMR1 gene affects cell viability and functioning of the secretory pathway. FEMS Yeast Res 7(7):1145–1152.  https://doi.org/10.1111/j.1567-1364.2007.00247.xCrossRefPubMedGoogle Scholar
  113. 113.
    Zhao HL, Xue C, Wang Y, Duan QF, Xiong XH, Yao XQ, Liu ZM (2008) Disruption of Pichia pastoris PMR1 gene decreases its folding capacity on human serum albumin and interferon-alpha2b fusion protein. Yeast 25(4):279–286.  https://doi.org/10.1002/yea.1589CrossRefPubMedGoogle Scholar
  114. 114.
    Zhao HL, Xue C, Wang Y, Yao XQ, Liu ZM (2008) Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization. Appl Microbiol Biotechnol 81(2):235–241.  https://doi.org/10.1007/s00253-008-1666-0CrossRefPubMedGoogle Scholar
  115. 115.
    Sohn YS, Park CS, Lee SB, Ryu DD (1998) Disruption of PMR1, encoding a Ca2+-ATPase homolog in Yarrowia lipolytica, affects secretion and processing of homologous and heterologous proteins. J Bacteriol 180(24):6736–6742PubMedPubMedCentralGoogle Scholar
  116. 116.
    Fokina AV, Chechenova MB, Karginov AV, Ter-Avanesyan MD, Agaphonov MO (2015) Genetic evidence for the role of the vacuole in supplying secretory organelles with Ca2+ in Hansenula polymorpha. PLoS One 10(12):e0145915.  https://doi.org/10.1371/journal.pone.0145915CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Agaphonov M, Romanova N, Sokolov S, Iline A, Kalebina T, Gellissen G, Ter-Avanesyan M (2005) Defect of vacuolar protein sorting stimulates proteolytic processing of human urokinase-type plasminogen activator in the yeast Hansenula polymorpha. FEMS Yeast Res 5(11):1029–1035.  https://doi.org/10.1016/j.femsyr.2005.07.003CrossRefPubMedGoogle Scholar
  118. 118.
    Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85(3):667–677.  https://doi.org/10.1007/s00253-009-2151-0CrossRefPubMedGoogle Scholar
  119. 119.
    Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T (2011) Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 151(2):194–203.  https://doi.org/10.1016/j.jbiotec.2010.12.002CrossRefPubMedGoogle Scholar
  120. 120.
    de Ruijter JC, Jurgens G, Frey AD (2017) Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production. FEMS Yeast Res 17(1). ppi: fow104  https://doi.org/10.1093/femsyr/fow104CrossRefGoogle Scholar
  121. 121.
    Marsalek L, Gruber C, Altmann F, Aleschko M, Mattanovich D, Gasser B, Puxbaum V (2017) Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris. Biotechnol J 12(5).  https://doi.org/10.1002/biot.201600584CrossRefGoogle Scholar
  122. 122.
    Gagnon-Arsenault I, Tremblay J, Bourbonnais Y (2006) Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6(7):966–978.  https://doi.org/10.1111/j.1567-1364.2006.00129.xCrossRefPubMedGoogle Scholar
  123. 123.
    Silva CI, Teles H, Moers AP, Eggink G, de Wolf FA, Werten MW (2011) Secreted production of collagen-inspired gel-forming polymers with high thermal stability in Pichia pastoris. Biotechnol Bioeng 108(11):2517–2525.  https://doi.org/10.1002/bit.23228CrossRefPubMedGoogle Scholar
  124. 124.
    Cho EY, Cheon SA, Kim H, Choo J, Lee DJ, Ryu HM, Rhee SK, Chung BH, Kim JY, Kang HA (2010) Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae. J Biotechnol 149(1–2):1–7.  https://doi.org/10.1016/j.jbiotec.2010.06.014CrossRefPubMedGoogle Scholar
  125. 125.
    Bourbonnais Y, Larouche C, Tremblay GM (2000) Production of full-length human pre-elafin, an elastase specific inhibitor, from yeast requires the absence of a functional yapsin 1 (Yps1p) endoprotease. Protein Expr Purif 20(3):485–491.  https://doi.org/10.1006/prep.2000.1338CrossRefPubMedGoogle Scholar
  126. 126.
    Yao XQ, Zhao HL, Xue C, Zhang W, Xiong XH, Wang ZW, Li XY, Liu ZM (2009) Degradation of HSA-AX15(R13K) when expressed in Pichia pastoris can be reduced via the disruption of YPS1 gene in this yeast. J Biotechnol 139(2):131–136.  https://doi.org/10.1016/j.jbiotec.2008.09.006CrossRefPubMedGoogle Scholar
  127. 127.
    Wu M, Shen Q, Yang Y, Zhang S, Qu W, Chen J, Sun H, Chen S (2013) Disruption of YPS1 and PEP4 genes reduces proteolytic degradation of secreted HSA/PTH in Pichia pastoris GS115. J Ind Microbiol Biotechnol 40(6):589–599.  https://doi.org/10.1007/s10295-013-1264-8CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Sohn MJ, Oh DB, Kim EJ, Cheon SA, Kwon O, Kim JY, Lee SY, Kang HA (2012) HpYPS1 and HpYPS7 encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast 29(1):1–16.  https://doi.org/10.1002/yea.1912CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Liu Z, Liu L, Osterlund T, Hou J, Huang M, Fagerberg L, Petranovic D, Uhlen M, Nielsen J (2014) Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microbiol 80(17):5542–5550.  https://doi.org/10.1128/aem.00712-14CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73(20):6499–6507CrossRefGoogle Scholar
  131. 131.
    Toikkanen JH, Miller KJ, Soderlund H, Jantti J, Keranen S (2003) The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae. J Biol Chem 278(23):20946–20953.  https://doi.org/10.1074/jbc.M213111200CrossRefPubMedGoogle Scholar
  132. 132.
    Liu SH, Chou WI, Lin SC, Sheu CC, Chang MD (2005) Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion. Biochem Biophys Res Commun 336(4):1172–1180.  https://doi.org/10.1016/j.bbrc.2005.08.234CrossRefPubMedGoogle Scholar
  133. 133.
    De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7(4):313–323.  https://doi.org/10.1002/yea.320070402CrossRefPubMedGoogle Scholar
  134. 134.
    Rodriguez-Limas WA, Tannenbaum V, Tyo KE (2015) Blocking endocytotic mechanisms to improve heterologous protein titers in Saccharomyces cerevisiae. Biotechnol Bioeng 112(2):376–385.  https://doi.org/10.1002/bit.25360CrossRefPubMedGoogle Scholar
  135. 135.
    Marx H, Sauer M, Resina D, Vai M, Porro D, Valero F, Ferrer P, Mattanovich D (2006) Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol Lett 264(1):40–47.  https://doi.org/10.1111/j.1574-6968.2006.00427.xCrossRefPubMedGoogle Scholar
  136. 136.
    Vai M, Brambilla L, Orlandi I, Rota N, Ranzi BM, Alberghina L, Porro D (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl Environ Microbiol 66(12):5477–5479CrossRefGoogle Scholar
  137. 137.
    Resina D, Maurer M, Cos O, Arnau C, Carnicer M, Marx H, Gasser B, Valero F, Mattanovich D, Ferrer P (2009) Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. New Biotechnol 25(6):396–403.  https://doi.org/10.1016/j.nbt.2009.01.008CrossRefGoogle Scholar
  138. 138.
    Passolunghi S, Riboldi L, Dato L, Porro D, Branduardi P (2010) Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb Cell Factories 9:7.  https://doi.org/10.1186/1475-2859-9-7CrossRefGoogle Scholar
  139. 139.
    Larsen S, Weaver J, de Sa Campos K, Bulahan R, Nguyen J, Grove H, Huang A, Low L, Tran N, Gomez S, Yau J, Ilustrisimo T, Kawilarang J, Lau J, Tranphung M, Chen I, Tran C, Fox M, Lin-Cereghino J, Lin-Cereghino GP (2013) Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins. Biotechnol Lett 35(11):1925–1935.  https://doi.org/10.1007/s10529-013-1290-7CrossRefPubMedGoogle Scholar
  140. 140.
    Chung BH, Park KS (1998) Simple approach to reducing proteolysis during secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol Bioeng 57(2):245–249CrossRefGoogle Scholar
  141. 141.
    Vad R, Nafstad E, Dahl L, Gabrielsen O (2005) Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 116(3):251–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Richard J. Zahrl
    • 1
    • 2
  • Brigitte Gasser
    • 6
    • 3
  • Diethard Mattanovich
    • 6
  • Pau Ferrer
    • 4
    • 5
    Email author
  1. 1.Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
  2. 2.Austrian Centre of Industrial Biotechnology (acib)ViennaAustria
  3. 3.Christian Doppler-Laboratory for Growth-Decoupled Protein Production in Yeast, Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Luxembourg Institute of Science and TechnologyBelvauxLuxembourg
  5. 5.Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaBellaterra (Cerdanyola del Vallès)Spain
  6. 6.Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU) and Austrian Centre of Industrial Biotechnology (acib)ViennaAustria

Personalised recommendations