Membrane Protein Production in Yeast: Modification of Yeast Membranes for Human Membrane Protein Production

  • Anita Emmerstorfer-Augustin
  • Tamara Wriessnegger
  • Melanie Hirz
  • Guenther Zellnig
  • Harald PichlerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1923)


Approximately 30% of the genes in the human genome code for membrane proteins, and yet we know relatively little about these complex molecules. Therefore, the biochemical and structural characterization of this challenging class of proteins represents an important frontier in both fundamental research and advances in drug discovery. However, due to their unique physical properties and requirement for association with cellular membranes, expression in heterologous systems is often daunting. In this chapter we describe how to engineer the yeast Pichia pastoris to obtain humanized sterol compositions. By implementing some simple genetic engineering approaches, P. pastoris can be reprogrammed to mainly produce cholesterol instead of ergosterol. We show how to apply mass spectrometry to confirm the production of cholesterol instead of ergosterol and how we have further analyzed the strain by electron microscopy. Finally, we delineate how to apply and test the cholesterol-forming P. pastoris strain for functional expression of mammalian Na,K-ATPase α3β1 isoform. Na,K-ATPases have been shown to specifically interact with cholesterol and phospholipids, and, obviously, the presence of cholesterol instead of ergosterol was the key to stabilizing correct localization and activity of this ion transporter.

Key words

Yeast Pichia pastoris Sterols Human membrane protein expression Membrane engineering 



This work has been supported by the Federal Ministry for Digital and Economic Affairs (bmwd); the Federal Ministry for Transport, Innovation, and Technology (bmvit); the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, Government of Lower Austria, and ZIT Technology Agency of the City of Vienna through the COMET-funding program managed by the Austrian Research Promotion Agency FFG and by the Austrian Science Fund (FWF) project J3787 (A. E.-A.). The funding agencies had no influence on the conduct of this research.


  1. 1.
    Blonder J, Conrads TP, Veenstra TD (2004) Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies. Expert Rev Proteomics 1:153–163. CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang L-J, Wang X-E, Peng X, Wei Y-J, Cao R, Liu Z, Xiong J-X, Yin X-f, Ping C, Liang S (2006) Proteomic analysis of low-abundant integral plasma membrane proteins based on gels. Cell Mol Life Sci 63:1790–1804. CrossRefPubMedGoogle Scholar
  3. 3.
    Gellisson G (2004) Key and criteria to the selection of an expression platform. Google Scholar
  4. 4.
    Gellissen G (2005) Production of recombinant proteins: novel microbial and eukaryotic expression systems. Wiley, WeinheimGoogle Scholar
  5. 5.
    Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69CrossRefGoogle Scholar
  6. 6.
    Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H (2014) Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 98:7671–7698. CrossRefPubMedGoogle Scholar
  7. 7.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754CrossRefGoogle Scholar
  10. 10.
    Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tamura T, Akihisa T, Kokke W (1992) Naturally occurring sterols and related compounds from plants. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. AOCS, Champaign, IL, pp 172–228CrossRefGoogle Scholar
  12. 12.
    Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966.<939::AID-JSFA644>3.0.CO;2-C CrossRefGoogle Scholar
  13. 13.
    Marsan M-P, Muller I, Milon A (1996) Ability of clionasterol and poriferasterol (24-epimers of sitosterol and stigmasterol) to regulate membrane lipid dynamics. Chem Phys Lipids 84(2):117–121. CrossRefGoogle Scholar
  14. 14.
    Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546. CrossRefPubMedGoogle Scholar
  15. 15.
    Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116. CrossRefPubMedGoogle Scholar
  16. 16.
    Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 837:336–343. CrossRefPubMedGoogle Scholar
  17. 17.
    Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14:47–92CrossRefGoogle Scholar
  18. 18.
    Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB (2005) Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci 102:14551–14556. CrossRefPubMedGoogle Scholar
  19. 19.
    Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175CrossRefGoogle Scholar
  20. 20.
    Guo DA, Venkatramesh M, Nes WD (1995) Developmental regulation of sterol biosynthesis in Zea mays. Lipids 30:203–219CrossRefGoogle Scholar
  21. 21.
    Nes WR (1987) Multiple roles for plant sterols. In: The metabolism, structure, and function of plant lipids. Springer, New York, pp 3–9CrossRefGoogle Scholar
  22. 22.
    Klose C, Surma MA, Simons K (2013) Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 25:406–413. CrossRefPubMedGoogle Scholar
  23. 23.
    Armstrong MJ, Carey MC (1987) Thermodynamic and molecular determinants of sterol solubilities in bile salt micelles. J Lipid Res 28:1144–1155PubMedGoogle Scholar
  24. 24.
    Jafurulla M, Rao BD, Sreedevi S, Ruysschaert J-M, Covey DF, Chattopadhyay A (2014) Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta 1838:158–163. CrossRefPubMedGoogle Scholar
  25. 25.
    Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807. CrossRefPubMedGoogle Scholar
  27. 27.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Adamian L, Naveed H, Liang J (2011) Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim Biophys Acta 1808:1092–1102. Scholar
  29. 29.
    Grandmougin-Ferjani A, Schuler-Muller I, Hartmann MA (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174CrossRefGoogle Scholar
  30. 30.
    Cornelius F, Turner N, Christensen HRZ (2003) Modulation of Na,K-ATPase by phospholipids and cholesterol. II. Steady-state and presteady-state kinetics. Biochemistry 42:8541–8549. CrossRefPubMedGoogle Scholar
  31. 31.
    Cornelius F (2001) Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 40:8842–8851CrossRefGoogle Scholar
  32. 32.
    Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJD (2007) Purification of the human α2 isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry 46:14937–14950. CrossRefPubMedGoogle Scholar
  33. 33.
    Haviv H, Cohen E, Lifshitz Y, Tal DM, Goldshleger R, Karlish SJD (2007) Stabilization of Na+,K+-ATPase purified from Pichia pastoris membranes by specific interactions with lipids. Biochemistry 46:12855–12867. CrossRefPubMedGoogle Scholar
  34. 34.
    Cohen E, Goldshleger R, Shainskaya A, Tal DM, Ebel C, le Maire M, Karlish SJD (2005) Purification of Na+,K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions. J Biol Chem 280:16610–16618. CrossRefPubMedGoogle Scholar
  35. 35.
    Hirz M, Richter G, Leitner E, Wriessnegger T, Pichler H (2013) A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform. Appl Microbiol Biotechnol 97(21):9465–9478. CrossRefPubMedGoogle Scholar
  36. 36.
    Aperia A (2007) New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52. CrossRefPubMedGoogle Scholar
  37. 37.
    Hasler U, Wang X, Crambert G, Béguin P, Jaisser F, Horisberger JD, Geering K (1998) Role of beta-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na,K-ATPase. J Biol Chem 273:30826–30835CrossRefGoogle Scholar
  38. 38.
    Geering K (2001) The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438CrossRefGoogle Scholar
  39. 39.
    Béguin P, Hasler U, Beggah A, Horisberger JD, Geering K (1998) Membrane integration of Na,K-ATPase alpha-subunits and beta-subunit assembly. J Biol Chem 273:24921–24931CrossRefGoogle Scholar
  40. 40.
    Reina C, Padoani G, Carotti C, Merico A, Tripodi G, Ferrari P, Popolo L (2007) Expression of the alpha3/beta1 isoform of human Na,K-ATPase in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 7:585–594. CrossRefPubMedGoogle Scholar
  41. 41.
    Quail MA, Kelly SL (1996) The extraction and analysis of sterols from yeast. Methods Mol Biol 53:123–131. CrossRefPubMedGoogle Scholar
  42. 42.
    Tuller G, Nemec T, Hrastnik C, Daum G (1999) Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15:1555–1564.<1555::AID-YEA479>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  43. 43.
    Wriessnegger T, Gübitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, Daum G (2007) Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochim Biophys Acta 1771:455–461CrossRefGoogle Scholar
  44. 44.
    Wriessnegger T, Augustin P, Engleder M, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29. CrossRefPubMedGoogle Scholar
  45. 45.
    Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7:e39720. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Souza CM, Schwabe TME, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H (2011) A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng 13:555–569. CrossRefPubMedGoogle Scholar
  47. 47.
    Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques 38:44, 46, 48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anita Emmerstorfer-Augustin
    • 1
  • Tamara Wriessnegger
    • 2
  • Melanie Hirz
    • 3
  • Guenther Zellnig
    • 4
  • Harald Pichler
    • 2
    • 3
    Email author
  1. 1.Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.acib-Austrian Centre of Industrial BiotechnologyGrazAustria
  3. 3.Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed GrazGrazAustria
  4. 4.Institute of Plant Sciences, University of Graz, NAWI GrazGrazAustria

Personalised recommendations