Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast

  • Olena P. Ishchuk
  • José L. Martínez
  • Dina PetranovicEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1923)


Human hemoglobin is an essential protein, whose main function as an oxygen carrier is indispensable for life. Hemoglobin is a cofactor-containing protein with heme as prosthetic group. Same as in humans, heme is synthesized in many organisms in a complex pathway involving two cellular compartments (mitochondria and cytosol), which is tightly regulated. Red blood cells (erythrocytes) are specialized and adapted for production and transport of the hemoglobin molecules. In addition to oxygen binding, hemoglobin can participate in a variety of chemical reactions by its iron and heme and may become toxic when released from erythrocytes. Hemoglobin is a major target for the development of blood substitutes/oxygen carriers, and therefore its microbial production is attractive, as it may provide a cheap and reliable source of human hemoglobin. Significant efforts have been dedicated to this task for the last three decades. Moreover since the first generation of cell-free blood substitutes based on unmodified hemoglobin failed human trials, mutant forms became of great interest.

In this chapter we summarize the existing knowledge about human hemoglobin, challenges of its microbial production, and its improvement, with a particular focus upon yeast as production host.

Key words

Hemoglobin Recombinant protein production Metabolic engineering Heme Yeast cell factories Saccharomyces cerevisiae 


  1. 1.
    Prabhulkar S, Tian H, Wang X et al (2012) Engineered proteins: redox properties and their applications. Antioxid Redox Signal 17(12):1796–1822PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lončar N, Fraaije MW (2015) Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 99(8):3351–3357PubMedCrossRefGoogle Scholar
  3. 3.
    Bankar SB, Bule MV, Singhal RS et al (2009) Glucose oxidase – an overview. Biotechnol Adv 27(4):489–501PubMedCrossRefGoogle Scholar
  4. 4.
    Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431PubMedCrossRefGoogle Scholar
  5. 5.
    Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. In: Neuberger A, Tatum EL (eds) Frontiers of biology, vol 21. North-Holland Publishing Company, Amsterdam, p 436Google Scholar
  6. 6.
    Messerschmidt A (2001) Handbook of metalloproteins. Wiley, ChichesterGoogle Scholar
  7. 7.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166CrossRefGoogle Scholar
  10. 10.
    Moraes CT, Diaz F, Barrientos A (2004) Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. Biochim Biophys Acta 1659(2–3):153–159PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Berg JM, Tymoczko JL, Stryer L (eds) (2002) Biochemistry. W. H. Freeman, New YorkGoogle Scholar
  12. 12.
    Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 26(2):162–167PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bohr C, Hasselbalch K, Krogh A (1904) Concerning a biologically important relationship – the influence of the carbon dioxide content of blood on its oxygen binding. Skand Arch Physiol 16:402–412 [In German]CrossRefGoogle Scholar
  14. 14.
    Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351(16):1655–1665PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Schaer DJ, Buehler PW (2013) Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med 3(6):a013433PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Doherty DH, Doyle MP, Curry SR (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16(7):672–676PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Olson JS, Foley EW, Rogge C et al (2004) No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36(6):685–697PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Alayash AI, Patel RP, Cashon RE (2001) Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid Redox Signal 3(2):313–327PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 4(2):259–270PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tsantes AE, Bonovas S, Travlou A et al (2006) Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid Redox Signal 8(7–8):1205–1216PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Johnson RM, Ho YS, Yu DY et al (2010) The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med 48(4):519–525PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187. Scholar
  23. 23.
    Rochette J, Craig JE, Thein SL (1994) Fetal hemoglobin levels in adults. Blood Rev 8(4):213–224PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Manca L, Masala B (2008) Disorders of the synthesis of human fetal hemoglobin. IUBMB Life 60(2):94–111PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Steinberg MH, Rodgers GP (2015) HbA2: biology, clinical relevance and a possible target for ameliorating sickle cell disease. Br J Haematol 170(6):781–787PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Peschle C, Mavilio F, Carè A et al (1985) Haemoglobin switching in human embryos: asynchrony of zeta-alpha and epsilon-gamma-globin switches in primitive and definite erythropoietic lineage. Nature 313(5999):235–238PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Al-Mufti R, Hambley H, Farzaneh F et al (2000) Fetal and embryonic hemoglobins in erythroblasts of chromosomally normal and abnormal fetuses at 10–40 weeks of gestation. Haematologica 85(7):690–693PubMedPubMedCentralGoogle Scholar
  28. 28.
    He Z, Russell JE (2001) Expression, purification, and characterization of human hemoglobins Gower-1 (zeta(2)epsilon(2)), Gower-2 (alpha(2)epsilon(2)), and Portland-2 (zeta(2)beta(2)) assembled in complex transgenic-knockout mice. Blood 97(4):1099–1105PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wilber A, Nienhuis AW, Persons DA (2011) Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 117:3945–3953PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2(12):a011627PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Militello V, Vitrano E, Cupane A (1991) The effect of organic cosolvents on the oxygen affinity of fetal hemoglobin. Relevance of protein-solvent interactions to the functional properties. Biophys Chem 39(2):161–169PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dumoulin A, Manning LR, Jenkins WT et al (1997) Exchange of subunit interfaces between recombinant adult and fetal hemoglobins. Evidence for a functional inter-relationship among regions of the tetramer. J Biol Chem 272(50):31326–31332PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chakane S, Matos T, Kettisen K et al (2017) Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein. Redox Biol 12:114–120PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ratanasopa K, Strader MB, Alayash AI et al (2015) Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Front Physiol 6:39PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lettre G, Bauer DE (2016) Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet 387(10037):2554–2564PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Saki N, Abroun S, Soleimani M et al (2016) MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J 17(4):583–592PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sripichai O, Fucharoen S (2016) Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol 9(12):1129–1137PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Habara AH, Shaikho EM, Steinberg MH (2017) Fetal hemoglobin in sickle cell anemia: the Arab-Indian haplotype and new therapeutic agents. Am J Hematol 92(11):1233–1242. Scholar
  39. 39.
    Tobian AA, Heddle NM, Wiegmann TL et al (2016) Red blood cell transfusion: 2016 clinical practice guidelines from AABB. Transfusion 56(10):2627–2630PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Forbes JM, Anderson MD, Anderson GF et al (1991) Blood transfusion costs: a multicenter study. Transfusion 31(4):318–323PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Moradi S, Jahanian-Najafabadi A, Roudkenar MH (2016) Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord 9:33–41PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Alayash AI (2014) Blood substitutes: why haven’t we been more successful? Trends Biotechnol 32(4):177–185PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Graves PE, Henderson DP, Horstman MJ et al (2008) Enhancing stability and expression of recombinant human hemoglobin in E. coli: progress in the development of a recombinant HBOC source. Biochim Biophys Acta 1784(10):1471–1479PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Martínez JL, Liu L, Petranovic D et al (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23(6):965–971PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jullesson D, David F, Pfleger B et al (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395–1402PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10(7):939–949PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Nagai K, Perutz MF, Poyart C (1985) Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci U S A 82(21):7252–7255PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wagenbach M, O’Rourke K, Vitez L et al (1991) Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology (N Y) 9(1):57–61Google Scholar
  49. 49.
    Behringer RR, Ryan TM, Reilly MP et al (1989) Synthesis of functional human hemoglobin in transgenic mice. Science 245(4921):971–973PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Swanson ME, Martin MJ, O’Donnell JK et al (1992) Production of functional human hemoglobin in transgenic swine. Biotechnology (N Y) 10(5):557–559Google Scholar
  51. 51.
    Dieryck W, Pagnier J, Poyart C et al (1997) Human haemoglobin from transgenic tobacco. Nature 386(6620):29–30PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Komar AA, Kommer A, Krasheninnikov IA et al (1993) Cotranslational heme binding to nascent globin chains. FEBS Lett 326(1–3):261–263PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yip YK, Waks M, Beychok S (1977) Reconstitution of native human hemoglobin from separated globin chains and alloplex intermediates. Proc Natl Acad Sci U S A 74(1):64–68PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hoffman SJ, Looker DL, Roehrich JM et al (1990) Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A 87(21):8521–8525PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Komar AA, Kommer A, Krasheninnikov IA et al (1997) Cotranslational folding of globin. J Biol Chem 272(16):10646–10651PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hernan RA, Hui HL, Andracki ME et al (1992) Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry 31(36):8619–8628PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kavanaugh JS, Rogers PH, Arnone A (1992) High-resolution X-ray study of deoxy recombinant human hemoglobins synthesized from beta-globins having mutated amino termini. Biochemistry 31(36):8640–8647PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shen TJ, Ho NT, Simplaceanu V et al (1993) Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A 90(17):8108–8112PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Walsh G (2002) Proteins: biochemistry and biotechnology. Wiley, ChichesterGoogle Scholar
  60. 60.
    Looker D, Abbott-Brown D, Cozart P et al (1992) A human recombinant haemoglobin designed for use as a blood substitute. Nature 356(6366):258–260PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Weickert MJ, Pagratis M, Glascock CB et al (1999) A mutation that improves soluble recombinant hemoglobin accumulation in Escherichia coli in heme excess. Appl Environ Microbiol 65(2):640–647PubMedPubMedCentralGoogle Scholar
  62. 62.
    Fronticelli C, Arosio D, Bobofchak KM et al (2001) Molecular engineering of a polymer of tetrameric hemoglobins. Proteins 44(3):212–222PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Feng L, Gell DA, Zhou S et al (2004) Molecular mechanism of AHSP-mediated stabilization of alpha-hemoglobin. Cell 119(5):629–640PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gell D, Kong Y, Eaton SA et al (2002) Biophysical characterization of the alpha-globin binding protein alpha-hemoglobin stabilizing protein. J Biol Chem 277(43):40602–40609PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Domingues-Hamdi E, Vasseur C, Fournier JB et al (2014) Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule. PLoS One 9(11):e111395PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vasseur-Godbillon C, Hamdane D, Marden MC et al (2006) High-yield expression in Escherichia coli of soluble human alpha-hemoglobin complexed with its molecular chaperone. Protein Eng Des Sel 19(3):91–97PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ratanasopa K, Cedervall T, Bülow L (2016) Possibilities of using fetal hemoglobin as a platform for producing hemoglobin-based oxygen carriers (HBOCs). Adv Exp Med Biol 876:445–453PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Adachi K, Konitzer P, Lai CH et al (1992) Oxygen binding and other physical properties of human hemoglobin made in yeast. Protein Eng 5(8):807–810PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Coghlan D, Jones G, Denton KA et al (1992) Structural and functional characterisation of recombinant human haemoglobin A expressed in Saccharomyces cerevisiae. Eur J Biochem 207(3):931–936PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Martin de Llano JJ, Schneewind O, Stetler G et al (1993) Recombinant human sickle hemoglobin expressed in yeast. Proc Natl Acad Sci U S A 90(3):918–922PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ogden JE, Harris R, Wilson MT (1994) Production of recombinant human hemoglobin A in Saccharomyces cerevisiae. Methods Enzymol 231:374–390PubMedCrossRefGoogle Scholar
  72. 72.
    Liu L, Martínez JL, Liu Z et al (2014) Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng 21:9–16PubMedCrossRefGoogle Scholar
  73. 73.
    Martínez JL, Liu L, Petranovic D et al (2015) Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae. Biotechnol Bioeng 112(1):181–188PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang L, Hach A (1999) Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 56(5–6):415–426PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hoffman M, Góra M, Rytka J (2003) Identification of rate-limiting steps in yeast heme biosynthesis. Biochem Biophys Res Commun 310(4):1247–1253PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30(4):590–595PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Pfeifer K, Kim KS, Kogan S et al (1989) Functional dissection and sequence of yeast HAP1 activator. Cell 56(2):291–301PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kwast KE, Burke PV, Poyton RO (1998) Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol 201(Pt 8):1177–1195PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ter Linde JJ, Steensma HY (2002) A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19(10):825–840PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Keng T (1992) HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol 12(6):2616–2623PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Guarente L, Mason T (1983) Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32(4):1279–1286PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136(3):813–817PubMedPubMedCentralGoogle Scholar
  83. 83.
    Yu J, Jiang J, Fang Z et al (2010) Enhanced expression of heterologous inulinase in Kluyveromyces lactis by disruption of hap1 gene. Biotechnol Lett 32(4):507–512PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sassa S (1996) Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J Exp Med 143(2):305–315CrossRefGoogle Scholar
  85. 85.
    Michener JK, Nielsen J, Smolke CD (2012) Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc Natl Acad Sci U S A 109(47):19504–19509PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olena P. Ishchuk
    • 1
  • José L. Martínez
    • 1
    • 2
  • Dina Petranovic
    • 1
    • 3
    Email author
  1. 1.Department of Biology and Biological Engineering, Systems and Synthetic BiologyChalmers University of TechnologyGothenburgSweden
  2. 2.Department of Biotechnology and Biomedicine, Section for Synthetic BiologyTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Novo Nordisk Foundation Center for Biosustainability, Chalmers University of TechnologyGothenburgSweden

Personalised recommendations