Advertisement

Established and Upcoming Yeast Expression Systems

  • Burcu Gündüz Ergün
  • Damla Hüccetoğulları
  • Sibel Öztürk
  • Eda Çelik
  • Pınar ÇalıkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1923)

Abstract

Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.

Key words

Recombinant protein production Yeast expression platform Vector Promoter Secretion signal Selection marker 

References

  1. 1.
    Gellissen G, Kunze G, Gaillardin C et al (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096.  https://doi.org/10.1016/j.femsyr.2005.06.004CrossRefPubMedGoogle Scholar
  2. 2.
    Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118.  https://doi.org/10.1016/j.biotechadv.2011.09.011CrossRefPubMedGoogle Scholar
  3. 3.
    Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567CrossRefPubMedGoogle Scholar
  4. 4.
    Hittinger CT (2013) Saccharomyces diversity and evolution: a budding model genus. Trends Genet 29:309–317.  https://doi.org/10.1016/j.tig.2013.01.002CrossRefPubMedGoogle Scholar
  5. 5.
    Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9.  https://doi.org/10.1016/j.cbpa.2015.06.004CrossRefPubMedGoogle Scholar
  6. 6.
    Shen MWY, Fang F, Sandmeyer S, Da Silva NA (2012) Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 29:495–503.  https://doi.org/10.1002/yea.2930CrossRefPubMedGoogle Scholar
  7. 7.
    Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170.  https://doi.org/10.1111/j.1567-1364.2011.00774.xCrossRefPubMedGoogle Scholar
  8. 8.
    Shin MK, Yoo HS (2013) Animal vaccines based on orally presented yeast recombinants. Vaccine 31:4287–4292.  https://doi.org/10.1016/j.vaccine.2013.07.029CrossRefPubMedGoogle Scholar
  9. 9.
    Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnol 26(10):1155–1160.  https://doi.org/10.1038/nbt1492CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nookaew I, Papini M, Pornputtapong N et al (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40:10084–10097.  https://doi.org/10.1093/nar/gks804CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ibanez C, Perez-Torrado R, Morard M et al (2017) RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. Int J Food Microbiol 257:262–270.  https://doi.org/10.1016/j.ijfoodmicro.2017.07.001CrossRefPubMedGoogle Scholar
  12. 12.
    Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349.  https://doi.org/10.1126/science.1158441CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Usaite R, Wohlschlegel J, Venable JD et al (2008) Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 7:266–275.  https://doi.org/10.1021/pr700580mCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Paulo JA, O’Connell JD, Gaun A, Gygi SP (2015) Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell 26:4063–4074.  https://doi.org/10.1091/mbc.E15-07-0499CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197.  https://doi.org/10.1016/j.copbio.2006.02.001CrossRefPubMedGoogle Scholar
  16. 16.
    Villas-Boas SG, Moxley JF, Akesson M et al (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677.  https://doi.org/10.1042/BJ20041162CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sauer U (2006) Metabolic networks in motion: 13 C-based flux analysis. Mol Syst Biol 2:1–10.  https://doi.org/10.1038/msb4100109CrossRefGoogle Scholar
  18. 18.
    Wasylenko TM, Stephanopoulos G (2015) Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112:470–483.  https://doi.org/10.1002/bit.25447CrossRefPubMedGoogle Scholar
  19. 19.
    Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.  https://doi.org/10.1038/35001009CrossRefPubMedGoogle Scholar
  20. 20.
    Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–805.  https://doi.org/10.1126/science.1075090CrossRefPubMedGoogle Scholar
  21. 21.
    Harbison CT, Gordon DB, Lee TI et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104.  https://doi.org/10.1038/nature02800CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huh W, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691.  https://doi.org/10.1038/nature02026CrossRefPubMedGoogle Scholar
  23. 23.
    Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253.  https://doi.org/10.1101/gr.234503CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Österlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36.  https://doi.org/10.1186/1752-0509-7-36CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun J, Shao Z, Zhao H et al (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2082–2092.  https://doi.org/10.1002/bit.24481CrossRefPubMedGoogle Scholar
  26. 26.
    Hammer SK, Avalos JL (2017) Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 13:823–832.  https://doi.org/10.1038/nchembio.2429CrossRefPubMedGoogle Scholar
  27. 27.
    Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704.  https://doi.org/10.1534/genetics.111.130765CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Natter K, Kohlwein SD (2013) Yeast and cancer cells—common principles in lipid metabolism. Biochim Biophys Acta 1831:314–326.  https://doi.org/10.1016/j.bbalip.2012.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sun S, Yang F, Tan G et al (2016) An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res 26:670–680.  https://doi.org/10.1101/gr.192526.115CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Valenzuela P, Medina A, Rutter WJ et al (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350.  https://doi.org/10.1038/298347a0CrossRefPubMedGoogle Scholar
  31. 31.
    Sanchez-Garcia L, Martín L, Mangues R et al (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33.  https://doi.org/10.1186/s12934-016-0437-3CrossRefGoogle Scholar
  32. 32.
    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefPubMedGoogle Scholar
  33. 33.
    Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000.  https://doi.org/10.1038/nbt.3040CrossRefPubMedGoogle Scholar
  34. 34.
    Huang C, Lowe AJ, Batt CA (2010) Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Appl Microbiol Biotechnol 87:401–410.  https://doi.org/10.1007/s00253-010-2590-7CrossRefPubMedGoogle Scholar
  35. 35.
    Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16.  https://doi.org/10.1111/1567-1364.12195CrossRefGoogle Scholar
  36. 36.
    Liu Z, Hou J, Martínez JL et al (2013) Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:8955–8962.  https://doi.org/10.1007/s00253-013-4715-2CrossRefPubMedGoogle Scholar
  37. 37.
    Berlec A, Štrukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274.  https://doi.org/10.1007/s10295-013-1235-0CrossRefPubMedGoogle Scholar
  38. 38.
    Parsaie Nasab F, Aebi M, Bernhard G, Frey AD (2013) A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol 79:997–1007.  https://doi.org/10.1128/AEM.02817-12CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu S, Zhang G-Y, Zhang H et al (2016) Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Factories 15:179.  https://doi.org/10.1186/s12934-016-0575-7CrossRefGoogle Scholar
  40. 40.
    Galao RP, Scheller N, Alves-Rodrigues I et al (2007) Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb Cell Factories 6:32.  https://doi.org/10.1186/1475-2859-6-32CrossRefGoogle Scholar
  41. 41.
    Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease ? Trends Biotechnol 26:584–590.  https://doi.org/10.1016/j.tibtech.2008.07.008CrossRefPubMedGoogle Scholar
  42. 42.
    Billingsley JM, DeNicola AB, Tang Y (2016) Technology development for natural product biosynthesis in Saccharomyces cerevisiae. Curr Opin Biotechnol 42:74–83.  https://doi.org/10.1016/j.copbio.2016.02.033CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214.  https://doi.org/10.1111/j.1567-1364.2011.00769.xCrossRefPubMedGoogle Scholar
  44. 44.
    Parent SA, Fenimore CM, Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S cerevisiae. Yeast 1:83–138.  https://doi.org/10.1002/yea.320010202CrossRefPubMedGoogle Scholar
  45. 45.
    Clark-Walker GD, Miklos GLG (1974) Localization and quantification of circular DNA in yeast. Eur J Biochem 41:359–365.  https://doi.org/10.1111/j.1432-1033.1974.tb03278.xCrossRefPubMedGoogle Scholar
  46. 46.
    Hartley JL, Donelson JE (1980) Nucleotide sequence of the yeast plasmid. Nature 286:860–864.  https://doi.org/10.1038/286860a0CrossRefPubMedGoogle Scholar
  47. 47.
    Broach JR (1983) Construction of high copy yeast vectors using 2-um circle sequences. In: Wu R, Grossman L, Moldave K (eds) Methods in enzymology. Academic Press, New York, pp 307–325Google Scholar
  48. 48.
    Futcher AB, Cox BS (1983) Maintenance of the 2 microns circle plasmid in populations of Saccharomyces cerevisiae. J Bacteriol 154:612–622PubMedPubMedCentralGoogle Scholar
  49. 49.
    Futcher AB, Cox BS (1984) Copy number and the stability of 2-um circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol 157:283–290PubMedPubMedCentralGoogle Scholar
  50. 50.
    Jayaram M, Li Y-Y, Broach JR (1983) The yeast plasmid 2 circle encodes components required for its high copy propagation. Cell 34:95–104.  https://doi.org/10.1016/0092-8674(83)90139-3CrossRefPubMedGoogle Scholar
  51. 51.
    Kikuchi Y (1983) Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:487–493.  https://doi.org/10.1016/0092-8674(83)90182-4CrossRefPubMedGoogle Scholar
  52. 52.
    Sturley SL, Young TW (1986) Genetic manipulation of commercial yeast strains. Biotechnol Genet Eng Rev 4:1–38.  https://doi.org/10.1080/02648725.1986.10647821CrossRefGoogle Scholar
  53. 53.
    Mishra S, Baranwal R (2009) Yeast genetics and biotechnological applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Netherlands, Dordrecht, pp 323–355CrossRefGoogle Scholar
  54. 54.
    Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109.  https://doi.org/10.1038/275104a0CrossRefPubMedGoogle Scholar
  55. 55.
    Wang T-T, Choi Y-J, Lee BH (2001) Transformation systems of non-Saccharomyces yeasts. Crit Rev Biotechnol 21:177–218CrossRefPubMedGoogle Scholar
  56. 56.
    Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.  https://doi.org/10.1002/yea.320020304CrossRefPubMedGoogle Scholar
  57. 57.
    Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488.  https://doi.org/10.1002/yea.320080602CrossRefGoogle Scholar
  58. 58.
    Kuo C, Campbell JL (1983) Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Am Soc Microbiol 3:1730–1737Google Scholar
  59. 59.
    Waterham HR, Wanders RJ (2007) Saccharomyces cerevisiae as a tool for human gene function discovery. In: Stansfield I, Stark MJ (eds) Methods in microbiology. Academic Press, New York, pp 577–595Google Scholar
  60. 60.
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedPubMedCentralGoogle Scholar
  61. 61.
    Christianson TW, Sikorski RS, Dante M et al (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.  https://doi.org/10.1016/0378-1119(92)90454-WCrossRefPubMedGoogle Scholar
  62. 62.
    Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122.  https://doi.org/10.1016/0378-1119(95)00037-7CrossRefPubMedGoogle Scholar
  63. 63.
    Labbe S, Thiele DJ (1999) Copper ion inducible and repressible Systems in Yeast. In: Glorioso JC, Schmidt MC (eds) Methods in enzymology. Academic Press, New York, pp 145–153Google Scholar
  64. 64.
    Siewers V (2014) An overview on selection marker genes for transformation of Saccharomyces cerevisiae. In: Mapelli V (ed) Yeast metabolic engineering. Springer New York, New York, NYGoogle Scholar
  65. 65.
    Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933.  https://doi.org/10.1073/pnas.75.4.1929CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mülleder M, Campbell K, Matsarskaia O et al (2016) Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities. F1000Res 5:2351.  https://doi.org/10.12688/f1000research.9606.1CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Giersberg M, Degelmann A, Bode R et al (2012) Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor?2 transformation/expression platform. J Ind Microbiol Biotechnol 39:1385–1396.  https://doi.org/10.1007/s10295-012-1134-9CrossRefGoogle Scholar
  68. 68.
    Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.  https://doi.org/10.1002/yea.320101310CrossRefPubMedGoogle Scholar
  69. 69.
    Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.  https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-KCrossRefPubMedGoogle Scholar
  70. 70.
    Tuite MF, Dobson MJ, Roberts NA, King RM (1982) Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO J 1:603–608CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Derynck R, Singh A, Goeddel DV (1983) Expression of the human interferon-y cDNA in yeast. Nucleic Acids Res 1:1819–1837CrossRefGoogle Scholar
  72. 72.
    Mellor J, Dobson MJ, Roberts NA et al (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.  https://doi.org/10.1016/0378-1119(90)90159-OCrossRefPubMedGoogle Scholar
  73. 73.
    Bitter GA, Egan KM (1984) Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde3-phosphate dehydrogenase gene promoter. Gene 32:263–274.  https://doi.org/10.1016/0378-1119(84)90002-7CrossRefPubMedGoogle Scholar
  74. 74.
    Hitzeman RA, Hagie FE, Levine HL et al (1981) Expression of a human gene for interferon in yeast. Nature 293:717–722.  https://doi.org/10.1038/293717a0CrossRefGoogle Scholar
  75. 75.
    Dobson MJ, Tuite MF, Mellor J et al (1983) Expression in Saccharomyces cerevisiae of human interferon-alpha directed by the TRP1 5′ region. Nucleic Acids Res 11:2287–2302.  https://doi.org/10.1093/nar/11.8.2287CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Brake AJ, Merryweather JP, Coit DG et al (1984) Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81:4642–4646CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ammerer G (1983) Expression of genes in yeast using the ADC1 promoter. In: Wu R, Grossman L, Moldave K (eds) Methods in enzymology. Academic Press, New York, pp 192–201Google Scholar
  78. 78.
    Goff CG, Moir DT, Kohno T et al (1984) Expression of calf prochymosin in Saccharomyces cerevisiae. Gene 27:35–46.  https://doi.org/10.1016/0378-1119(84)90236-1CrossRefPubMedGoogle Scholar
  79. 79.
    Rönicke V, Graulich W, Mumberg D et al (1997) Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Methods Enzymol 283:313–322CrossRefPubMedGoogle Scholar
  80. 80.
    Weinhandl K, Winkler M, Glieder A, Camattari A (2014) Carbon source dependent promoters in yeasts. Microb Cell Factories 13:5.  https://doi.org/10.1186/1475-2859-13-5CrossRefGoogle Scholar
  81. 81.
    Miyanohara A, Toh-E A, Nozaki C et al (1983) Expression of hepatitis B surface antigen gene in yeast. Proc Natl Acad Sci U S A 80:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Curran KA, Crook NC, Karim AS et al (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5:1–20.  https://doi.org/10.1038/ncomms5002CrossRefGoogle Scholar
  83. 83.
    Dahl RH, Zhang F, Alonso-gutierrez J et al (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046.  https://doi.org/10.1038/nbt.2689CrossRefPubMedGoogle Scholar
  84. 84.
    Rajkumar AS, Liu G, Bergenholm D et al (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res 44:e136.  https://doi.org/10.1093/nar/gkw553CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Chung BH, Nam SW, Kim BM, Park YH (1996) Highly efficient secretion of heterologous proteins from Saccharomyces cerevisiae using inulinase signal peptides. Biotechnol Bioeng 49:473–479.  https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4<473::AID-BIT15>3.0.CO;2-BCrossRefPubMedGoogle Scholar
  86. 86.
    Hitzeman R, Leung D, Perry L et al (1983) Secretion of human interferons by yeast. Science 219:620–625.  https://doi.org/10.1126/science.6186023CrossRefPubMedGoogle Scholar
  87. 87.
    Mori A, Hara S, Sugahara T et al (2015) Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120:518–525.  https://doi.org/10.1016/j.jbiosc.2015.03.003CrossRefPubMedGoogle Scholar
  88. 88.
    Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agric Biol Chem 33:1519–1520.  https://doi.org/10.1080/00021369.1969.10859497CrossRefGoogle Scholar
  89. 89.
    Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438.  https://doi.org/10.1007/s10295-009-0638-4CrossRefPubMedGoogle Scholar
  91. 91.
    Ergun BG, Calik P (2016) Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 39:1–36.  https://doi.org/10.1007/s00449-015-1476-6CrossRefPubMedGoogle Scholar
  92. 92.
    Choi B-K, Bobrowicz P, Davidson RC et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Hamilton SR, Bobrowicz P, Bobrowicz B et al (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246.  https://doi.org/10.1126/science.1088166CrossRefGoogle Scholar
  94. 94.
    Vervecken W, Kaigorodov V, Callewaert N et al (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Çalık P, Ata Ö, Güneş H et al (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36.  https://doi.org/10.1016/j.bej.2014.12.003CrossRefGoogle Scholar
  96. 96.
    Gasser B, Prielhofer R, Marx H et al (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208.  https://doi.org/10.2217/fmb.12.133CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    De Schutter K, Lin Y-C, Tiels P et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566.  https://doi.org/10.1038/nbt.1544CrossRefGoogle Scholar
  98. 98.
    Mattanovich D, Graf A, Stadlmann J et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Factories 8:29.  https://doi.org/10.1186/1475-2859-8-29CrossRefGoogle Scholar
  99. 99.
    Love KR, Shah KA, Whittaker CA et al (2016) Comparative genomics and transcriptomics of Pichia pastoris. BMC Genomics 17:550.  https://doi.org/10.1186/s12864-016-2876-yCrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Kuberl A, Schneider J, Thallinger GG et al (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154:312–320.  https://doi.org/10.1016/j.jbiotec.2011.04.014CrossRefPubMedGoogle Scholar
  101. 101.
    Valli M, Tatto NE, Peymann A et al (2016) Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function. FEMS Yeast Res 16.  https://doi.org/10.1093/femsyr/fow051CrossRefPubMedGoogle Scholar
  102. 102.
    Sturmberger L, Chappell T, Geier M et al (2016) Refined Pichia pastoris reference genome sequence. J Biotechnol 235:121–131.  https://doi.org/10.1016/j.jbiotec.2016.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ciofalo V, Barton N, Kreps J et al (2006) Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul Toxicol Pharmacol 45:1–8.  https://doi.org/10.1016/j.yrtph.2006.02.001CrossRefPubMedGoogle Scholar
  104. 104.
    Thompson CA (2010) FDA approves kallikrein inhibitor to treat hereditary angioedema. Am J Health Syst Pharm 67:93CrossRefPubMedGoogle Scholar
  105. 105.
    Coughlan AY, Hanson SJ, Byrne KP, Wolfe KH (2016) Centromeres of the yeast Komagataella phaffii (Pichia pastoris) have a simple inverted-repeat structure. Genome Biol Evol 8:2482–2492.  https://doi.org/10.1093/gbe/evw178CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lee CC, Williams TG, Wong DWS, Robertson GH (2005) An episomal expression vector for screening mutant gene libraries in Pichia pastoris. Plasmid 54:80–85.  https://doi.org/10.1016/j.plasmid.2004.12.001CrossRefPubMedGoogle Scholar
  107. 107.
    Uchima CA, Arioka M (2012) Expression and one-step purification of recombinant proteins using an alternative episomal vector for the expression of N-tagged heterologous proteins in Pichia pastoris. Biosci Biotechnol Biochem 76:368–371.  https://doi.org/10.1271/bbb.110628CrossRefPubMedGoogle Scholar
  108. 108.
    Liachko I, Dunham MJ (2014) An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res 14:364–367.  https://doi.org/10.1111/1567-1364.12123CrossRefPubMedGoogle Scholar
  109. 109.
    Camattari A, Goh A, Yip LY et al (2016) Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Factories 15:139.  https://doi.org/10.1186/s12934-016-0540-5CrossRefGoogle Scholar
  110. 110.
    Mattanovich D, Sauer M, Gasser B (2017) Industrial microorganisms: Pichia pastoris. In: Industrial biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 687–714Google Scholar
  111. 111.
    Naatsaari L, Mistlberger B, Ruth C et al (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7:e39720.  https://doi.org/10.1371/journal.pone.0039720CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Jacobs PP, Geysens S, Vervecken W et al (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70.  https://doi.org/10.1038/nprot.2008.213CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Prielhofer R, Barrero JJ, Steuer S et al (2017) GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst Biol 11:123.  https://doi.org/10.1186/s12918-017-0492-3CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Obst U, Lu TK, Sieber V (2017) A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth Biol 6:1016–1025.  https://doi.org/10.1021/acssynbio.6b00337CrossRefGoogle Scholar
  115. 115.
    Soderholm J, Bevis BJ, Glick BS (2001) Vector for pop-in/pop-out gene replacement in Pichia pastoris. Biotechniques 31:306–310CrossRefGoogle Scholar
  116. 116.
    Sears IB, O’Connor J, Rossanese OW, Glick BS (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14:783–790.  https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<783::AID-YEA272>3.0.CO;2-YCrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sunga AJ, Cregg JM (2004) The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 330:39–47.  https://doi.org/10.1016/j.gene.2003.12.015CrossRefGoogle Scholar
  118. 118.
    Du M, Battles MB, Nett JH (2012) A color-based stable multi-copy integrant selection system for Pichia pastoris using the attenuated ADE1 and ADE2 genes as auxotrophic markers. Bioeng Bugs 3:32–37.  https://doi.org/10.4161/bbug.3.1.17936CrossRefGoogle Scholar
  119. 119.
    Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259.  https://doi.org/10.1385/MB:31:3:245CrossRefGoogle Scholar
  120. 120.
    Couderc R, Baratti J (1980) Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric Biol Chem 44:2279–2289.  https://doi.org/10.1080/00021369.1980.10864320CrossRefGoogle Scholar
  121. 121.
    Inan M, Meagher MM (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng 92:585–589CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Cregg JM, Madden KR, Barringer KJ et al (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hasslacher M, Schall M, Hayn M et al (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif 11:61–71.  https://doi.org/10.1006/prep.1997.0765CrossRefPubMedGoogle Scholar
  124. 124.
    Schotte P, Dewerte I, De Groeve M et al (2016) Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-l-homoserine at methionine residues when methanol is used as the sole carbon source. Microb Cell Factories 15:98.  https://doi.org/10.1186/s12934-016-0499-2CrossRefGoogle Scholar
  125. 125.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270.  https://doi.org/10.1002/yea.1208CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Tschopp JF, Brust PF, Cregg JM et al (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876.  https://doi.org/10.1093/nar/15.9.3859CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Shen S, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102CrossRefGoogle Scholar
  128. 128.
    Prielhofer R, Maurer M, Klein J et al (2013) Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Factories 12:5.  https://doi.org/10.1186/1475-2859-12-5CrossRefGoogle Scholar
  129. 129.
    Payne WE, Gannon PM, Kaiser CA (1995) An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product. Gene 163:19–26CrossRefPubMedGoogle Scholar
  130. 130.
    Ahn J, Hong J, Park M et al (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol 75:3528–3534.  https://doi.org/10.1128/AEM.02913-08CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Cregg JM, Tolstorukov II (2012) P. pastoris ADH promoter and use thereof to direct expression of proteins. US Patent 8222386 B2. 2Google Scholar
  132. 132.
    Stadlmayr G, Mecklenbrauker A, Rothmuller M et al (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150:519–529.  https://doi.org/10.1016/j.jbiotec.2010.09.957CrossRefGoogle Scholar
  133. 133.
    Kern A, Hartner FS, Freigassner M et al (2007) Pichia pastoris “just in time” alternative respiration. Microbiology 153:1250–1260.  https://doi.org/10.1099/mic.0.2006/001404-0CrossRefGoogle Scholar
  134. 134.
    Waterham HR, Digan ME, Koutz PJ et al (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44CrossRefGoogle Scholar
  135. 135.
    Baumann K, Maurer M, Dragosits M et al (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100:177–183.  https://doi.org/10.1002/bit.21763CrossRefGoogle Scholar
  136. 136.
    Periyasamy S, Govindappa N, Sreenivas S, Sastry K (2013) Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. Protein Expr Purif 92:128–133.  https://doi.org/10.1016/j.pep.2013.09.008CrossRefGoogle Scholar
  137. 137.
    Ahn J, Hong J, Lee H et al (2007) Translation elongation factor 1-alpha gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol 74:601–608.  https://doi.org/10.1007/s00253-006-0698-6CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Ata Ö, Prielhofer R, Gasser B et al (2017) Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng 114(10):2319–2327.  https://doi.org/10.1002/bit.26363CrossRefGoogle Scholar
  139. 139.
    Portela RMC, Vogl T, Kniely C et al (2017) Synthetic core promoters as universal parts for fine-tuning expression in different yeast species. ACS Synth Biol 6:471–484.  https://doi.org/10.1021/acssynbio.6b00178CrossRefGoogle Scholar
  140. 140.
    Vogl T, Ruth C, Pitzer J et al (2014) Synthetic core promoters for Pichia pastoris. ACS Synth Biol 3:188–191.  https://doi.org/10.1021/sb400091pCrossRefGoogle Scholar
  141. 141.
    Hartner FS, Ruth C, Langenegger D et al (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36:e76.  https://doi.org/10.1093/nar/gkn369CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Öztürk S, Gündüz-Ergün B, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101(20):7459–7475.  https://doi.org/10.1007/s00253-017-8487-yCrossRefGoogle Scholar
  143. 143.
    Liu H, Tan X, Russell KA et al (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 270:10940–10951CrossRefGoogle Scholar
  144. 144.
    Vogl T, Sturmberger L, Kickenweiz T et al (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5:172–186.  https://doi.org/10.1021/acssynbio.5b00199CrossRefGoogle Scholar
  145. 145.
    Passoth V, Hahn-Hägerdal B (2000) Production of a heterologous endo-1,4-β-xylanase in the yeast Pichia stipitis with an O2-regulated promoter. Enzym Microb Technol 26:781–784.  https://doi.org/10.1016/S0141-0229(00)00171-XCrossRefGoogle Scholar
  146. 146.
    Chien L-J, Lee C-K (2005) Expression of bacterial hemoglobin in the yeast, Pichia pastoris, with a low O2-induced promoter. Biotechnol Lett 27:1491–1497.  https://doi.org/10.1007/s10529-005-1324-xCrossRefGoogle Scholar
  147. 147.
    Camattari A, Bianchi MM, Branduardi P et al (2007) Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Appl Environ Microbiol 73:922–929.  https://doi.org/10.1128/AEM.01764-06CrossRefGoogle Scholar
  148. 148.
    Koller A, Valesco J, Subramani S (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast 16:651–656.  https://doi.org/10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-FCrossRefGoogle Scholar
  149. 149.
    Huang C-J, Damasceno LM, Anderson KA et al (2011) A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol 90:235–247.  https://doi.org/10.1007/s00253-011-3118-5CrossRefGoogle Scholar
  150. 150.
    Laroche Y, Storme V, De Meutter J et al (1994) High-level secretion and very efficient isotopic Labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Nat Biotechnol 12:1119–1124CrossRefGoogle Scholar
  151. 151.
    Weiss HM, Haase W, Michel H, Reilander H (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett 377:451–456CrossRefGoogle Scholar
  152. 152.
    Ha SH, Park JJ, Kim JW et al (2001) Molecular cloning and high-level expression of G2 protein of hantaan (HTN) virus 76-118 strain in the yeast Pichia pastoris KM71. Virus Genes 22:167–173CrossRefGoogle Scholar
  153. 153.
    Trujillo LE, Arrieta JG, Dafhnis F et al (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzym Microb Technol 28:139–144CrossRefGoogle Scholar
  154. 154.
    Yoshimasu MA, Ahn J-K, Tanaka T, Yada RY (2002) Soluble expression and purification of porcine pepsinogen from Pichia pastoris. Protein Expr Purif 25:229–236CrossRefGoogle Scholar
  155. 155.
    Murasugi A, Tohma-Aiba Y (2001) Comparison of three signals for secretory expression of recombinant human midkine in Pichia pastoris. Biosci Biotechnol Biochem 65:2291–2293.  https://doi.org/10.1271/bbb.65.2291CrossRefGoogle Scholar
  156. 156.
    Tschopp JF, Sverlow G, Kosson R et al (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. Nat Biotechnol 5:1305–1308CrossRefGoogle Scholar
  157. 157.
    Paifer E, Margolles E, Cremata J et al (1994) Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10:1415–1419.  https://doi.org/10.1002/yea.320101104CrossRefGoogle Scholar
  158. 158.
    Kuwae S, Ohyama M, Ohya T et al (2005) Production of recombinant human antithrombin by Pichia pastoris. J Biosci Bioeng 99:264–271.  https://doi.org/10.1263/jbb.99.264CrossRefGoogle Scholar
  159. 159.
    Massahi A, Calik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188.  https://doi.org/10.1016/j.jtbi.2014.08.048CrossRefGoogle Scholar
  160. 160.
    Massahi A, Calik P (2016) Endogenous signal peptides in recombinant protein production by Pichia pastoris: from in-silico analysis to fermentation. J Theor Biol 408:22–33.  https://doi.org/10.1016/j.jtbi.2016.07.039CrossRefGoogle Scholar
  161. 161.
    Liang S, Li C, Ye Y, Lin Y (2013) Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol Lett 35:97–105.  https://doi.org/10.1007/s10529-012-1055-8CrossRefGoogle Scholar
  162. 162.
    Khasa YP, Conrad S, Sengul M et al (2011) Isolation of Pichia pastoris PIR genes and their utilization for cell surface display and recombinant protein secretion. Yeast 28:213–226.  https://doi.org/10.1002/yea.1832CrossRefGoogle Scholar
  163. 163.
    Govindappa N, Hanumanthappa M, Venkatarangaiah K et al (2014) A new signal sequence for recombinant protein secretion in Pichia pastoris. J Microbiol Biotechnol 24:337–345CrossRefGoogle Scholar
  164. 164.
    Heiss S, Puxbaum V, Gruber C et al (2015) Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology 161:1356–1368.  https://doi.org/10.1099/mic.0.000105CrossRefGoogle Scholar
  165. 165.
    Aw R, McKay PF, Shattock RJ, Polizzi KM (2017) Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris. AMB Express 7:70.  https://doi.org/10.1186/s13568-017-0372-7CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Nel S, Labuschagne M, Albertyn J (2009) Advances in gene expression in non-conventional yeasts BT—yeast biotechnology: diversity and applications. In: Satyanarayana T, Kunze G (eds) . Springer Netherlands, Dordrecht, pp 369–403CrossRefGoogle Scholar
  167. 167.
    Radecka D, Mukherjee V, Mateo RQ et al (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15:1–13.  https://doi.org/10.1093/femsyr/fov053CrossRefGoogle Scholar
  168. 168.
    Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5:39.  https://doi.org/10.1186/1475-2859-5-39CrossRefGoogle Scholar
  169. 169.
    van Dijk R, Faber KN, Kiel JAKW et al (2000) The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzym Microb Technol 26:793–800.  https://doi.org/10.1016/S0141-0229(00)00173-3CrossRefGoogle Scholar
  170. 170.
    Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750.  https://doi.org/10.1007/s002530000464CrossRefGoogle Scholar
  171. 171.
    Veenhuis M, Kram AM, Kunau WH, Harder W (1990) Excessive membrane development following exposure of the methylotrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast 6:511–519.  https://doi.org/10.1002/yea.320060608CrossRefGoogle Scholar
  172. 172.
    Baerends RJS, Faber KN, Kram AM et al (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J Biol Chem 275:9986–9995.  https://doi.org/10.1074/jbc.275.14.9986CrossRefGoogle Scholar
  173. 173.
    Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164.  https://doi.org/10.1016/S1567-1356(03)00146-6CrossRefGoogle Scholar
  174. 174.
    van Zutphen T, Baerends RJ, Susanna KA et al (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11:1.  https://doi.org/10.1186/1471-2164-11-1CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Veenhuis M, van der Klei IJ, Titorenko V, Harder W (1992) Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 100:393–403.  https://doi.org/10.1111/j.1574-6968.1992.tb14068.xCrossRefPubMedGoogle Scholar
  176. 176.
    Ávila J, Pérez MD, Brito N et al (1995) Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 366:137–142.  https://doi.org/10.1016/0014-5793(95)00511-7CrossRefPubMedGoogle Scholar
  177. 177.
    Brito N, Pérez MD, Perdomo G et al (1999) A set of Hansenula polymorpha integrative vectors to construct lacZ fusions. Appl Microbiol Biotechnol 53:23–29.  https://doi.org/10.1007/s002530051609CrossRefGoogle Scholar
  178. 178.
    Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26:277–284.  https://doi.org/10.1016/S0168-6445(02)00100-6CrossRefPubMedGoogle Scholar
  179. 179.
    Kunze G, Kang HA, Gellissen G (2009) Hansenula polymorpha (Pichia angusta): biology and applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Netherlands, Dordrecht, pp 47–64CrossRefGoogle Scholar
  180. 180.
    Sohn JH, Choi ES, Kim CH et al (1996) A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J Bacteriol 178:4420–4428.  https://doi.org/10.1128/jb.178.15.4420-4428.1996CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190:87–97.  https://doi.org/10.1016/S0378-1119(97)00020-6CrossRefGoogle Scholar
  182. 182.
    Janowicz ZA, Melber K, Merckelbach A et al (1991) Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast 7:431–443.  https://doi.org/10.1002/yea.320070502CrossRefPubMedGoogle Scholar
  183. 183.
    Gatzke R, Weydemann U, Janowicz ZA, Hollenberg CP (1995) Stable multicopy integration of vector sequences in Hansenula polymorpha. Appl Microbiol Biotechnol 43:844–849.  https://doi.org/10.1007/BF02431917CrossRefGoogle Scholar
  184. 184.
    Gellissen G, Hollenberg CP, Janowicz ZA (1995) Gene expression in methylotrophic yeasts. Bioprocess Technol 22:195–239PubMedGoogle Scholar
  185. 185.
    Agaphonov MO, Beburov MY, Ter-Avanesyan MD, Smirnov VN (1995) A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 11:1241–1247.  https://doi.org/10.1002/yea.320111304CrossRefPubMedGoogle Scholar
  186. 186.
    Machín F, Perdomo G, Pérez MD et al (2001) Evidence for multiple nitrate uptake systems in the yeast Hansenula polymorpha. FEMS Microbiol Lett 194:171–174.  https://doi.org/10.1016/S0378-1097(00)00524-3CrossRefPubMedGoogle Scholar
  187. 187.
    Song H, Li Y, Fang W et al (2003) Development of a set of expression vectors in Hansenula polymorpha. Biotechnol Lett 25:1999–2006.  https://doi.org/10.1023/B:BILE.0000004392.87179.29CrossRefPubMedGoogle Scholar
  188. 188.
    Agaphonov MO, Trushkina PM, Sohn J-H et al (1999) Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast 15:541–551.  https://doi.org/10.1002/(SICI)1097-0061(199905)15:7<541::AID-YEA392>3.0.CO;2-GCrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Heo JH, Hong WK, Cho EY et al (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res 4:175–184.  https://doi.org/10.1016/S1567-1356(03)00150-8CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Cox H, Mead D, Sudbery P et al (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16:1191–1203.  https://doi.org/10.1002/1097-0061(20000930)16:13<1191::AID-YEA589>3.0.CO;2-2CrossRefPubMedGoogle Scholar
  191. 191.
    Klabunde J, Diesel A, Waschk D et al (2002) Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58:797–805.  https://doi.org/10.1007/s00253-002-0957-0CrossRefPubMedGoogle Scholar
  192. 192.
    Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4:185–193.  https://doi.org/10.1016/S1567-1356(03)00148-XCrossRefGoogle Scholar
  193. 193.
    Liu Y, Li Y, Liu L et al (2005) Design of vectors for efficient integration and transformation in Hansenula polymorpha. Biotechnol Lett 27:1529–1534.  https://doi.org/10.1007/s10529-005-1469-7CrossRefPubMedGoogle Scholar
  194. 194.
    Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2005) Wide-range integrative expression vectors for fungi, based on ribosomal DNA elements. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 273–286CrossRefGoogle Scholar
  195. 195.
    Ilgen C, Lin-Cereghino J, Cregg JM (2005) Pichia pastoris. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 143–162CrossRefGoogle Scholar
  196. 196.
    Roggenkamp R, Hansen H, Eckart M et al (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet MGG 202:302–308.  https://doi.org/10.1007/BF00331655CrossRefGoogle Scholar
  197. 197.
    Merckelbach A, Gödecke S, Janowicz ZA, Hollenberg CP (1993) Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol 40:361–364.  https://doi.org/10.1007/BF00170393CrossRefPubMedGoogle Scholar
  198. 198.
    Agaphonov MO, Poznyakovski AI, Bogdanova AI, Ter-Avanesyan MD (1994) I. Yeast sequencing reports. Isolation and characterization of the LEU2 gene of Hansenula polymorpha. Yeast 10:509–513.  https://doi.org/10.1002/yea.320100410CrossRefPubMedGoogle Scholar
  199. 199.
    Bogdanova AI, Agaphonov MO, Ter-Avanesyan MD (1995) Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast 11:343–353.  https://doi.org/10.1002/yea.320110407CrossRefPubMedGoogle Scholar
  200. 200.
    Zurek C, Kubis E, Keup P et al (1996) Production of two aprotinin variants in Hansenula polymorpha. Process Biochem 31:679–689.  https://doi.org/10.1016/S0032-9592(96)00018-0CrossRefGoogle Scholar
  201. 201.
    Kang HA, Hong WK, Sohn JH et al (2001) Molecular characterization of the actin-encoding gene and the use of its promoter for a dominant selection system in the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 55:734–741.  https://doi.org/10.1007/s002530100605CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Rezaee A (2003) Construction of a suitable vector for Lacz gene expression in Hansunela polymorpha. Pakistan J Biol Sci 6:1361–1364.  https://doi.org/10.3923/pjbs.2003.1361.1364CrossRefGoogle Scholar
  203. 203.
    Kang HA, Gellissen G (2005) Hansenula polymorpha. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRGGoogle Scholar
  204. 204.
    Suckow M, Gellissen G (2005) The expression platform based on H. polymorpha strain RB11 and its derivatives—history, status and perspectives. In: Gellissen G (ed) Hansenula polymorpha. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 105–123CrossRefGoogle Scholar
  205. 205.
    Baerends RJS, Sulter GJ, Jeffries TW et al (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42.  https://doi.org/10.1002/yea.805CrossRefPubMedGoogle Scholar
  206. 206.
    Phongdara A, Merckelbach A, Keup P et al (1998) Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 50:77–84.  https://doi.org/10.1007/s002530051259CrossRefPubMedGoogle Scholar
  207. 207.
    Brito N, Avila J, Perez MD et al (1996) The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and coordinately regulated. Biochem J 317:89–95.  https://doi.org/10.1042/bj3170089CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Pérez MD, González C, Ávila J et al (1997) The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem J 321:397–403.  https://doi.org/10.1042/bj3210397CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Alamäe T, Pärn P, Viigand K, Karp H (2003) Regulation of the Hansenula polymorpha maltase gene promoter in H. polymorpha and Saccharomyces cerevisiae. FEMS Yeast Res 4:165–173.  https://doi.org/10.1016/S1567-1356(03)00142-9CrossRefPubMedGoogle Scholar
  210. 210.
    Amuel C, Gellissen G, Hollenberg CP, Suckow M (2000) Analysis of heat shock promoters in Hansenula polymorpha: the TPS1 promoter, a novel element for heterologous gene expression. Biotechnol Bioprocess Eng 5:247–252.  https://doi.org/10.1007/BF02942181CrossRefGoogle Scholar
  211. 211.
    Kang HA, Kang W, Hong W-K et al (2001) Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76:175–185.  https://doi.org/10.1002/bit.1157CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Weydemann U, Keup P, Piontek M et al (1995) High-level secretion of hirudin by Hansenula polymorpha — authentic processing of three different preprohirudins. Appl Microbiol Biotechnol 44:377–385.  https://doi.org/10.1007/BF00169932CrossRefGoogle Scholar
  213. 213.
    Kumari A, Baronian K, Kunze G, Gupta R (2015) Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts. Protein Expr Purif 110:138–144.  https://doi.org/10.1016/j.pep.2015.02.016CrossRefPubMedGoogle Scholar
  214. 214.
    Eilert E, Rolf T, Heumaier A et al (2013) Improved processing of secretory proteins in Hansenula polymorpha by sequence variation near the processing site of the alpha mating factor prepro sequence. J Biotechnol 167:94–100.  https://doi.org/10.1016/j.jbiotec.2012.08.024CrossRefPubMedGoogle Scholar
  215. 215.
    Qian W, Aguilar F, Wang T, Qiu B (2013) Secretion of truncated recombinant rabies virus glycoprotein with preserved antigenic properties using a co-expression system in Hansenula polymorpha. J Microbiol 51:234–240.  https://doi.org/10.1007/s12275-013-2337-0CrossRefPubMedGoogle Scholar
  216. 216.
    Talebkhan Y, Samadi T, Samie A et al (2016) Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol 8:21–28PubMedPubMedCentralGoogle Scholar
  217. 217.
    Sohn MJ, Oh D-B, Kim EJ et al (2012) HpYPS1 and HpYPS7 encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast 29:1–16.  https://doi.org/10.1002/yea.1912CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Cheon SA, Jung J, Choo JH et al (2014) Characterization of putative glycosylphosphatidylinositol-anchoring motifs for surface display in the methylotrophic yeast Hansenula polymorpha. Biotechnol Lett 36:2085–2094.  https://doi.org/10.1007/s10529-014-1582-6CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Kim S-Y, Sohn J-H, Pyun Y-R, Choi E-S (2002) A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast 19:1153–1163.  https://doi.org/10.1002/yea.911CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Kunze G, Gaillardin C, Czernicka M et al (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest. Biotechnol Biofuels 7:66.  https://doi.org/10.1186/1754-6834-7-66CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Malak A, Baronian K, Kunze G (2016) Blastobotrys (Arxula) adeninivorans: a promising alternative yeast for biotechnology and basic research. Yeast 33:535–547.  https://doi.org/10.1002/yea.3180CrossRefPubMedGoogle Scholar
  222. 222.
    Middelhoven WJ, Niet MCH-T, Rij NJWK-V (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie Van Leeuwenhoek 50:369–378.  https://doi.org/10.1007/BF00394651CrossRefPubMedGoogle Scholar
  223. 223.
    Böer E, Breuer FS, Weniger M et al (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92:105–114.  https://doi.org/10.1007/s00253-011-3320-5CrossRefGoogle Scholar
  224. 224.
    Wartmann T, Krüger A, Adler K et al (1995) Temperature-dependent dimorphism of the yeast Arxula adeninivorans Ls3. Antonie Van Leeuwenhoek 68:215–223.  https://doi.org/10.1007/BF00871818CrossRefPubMedGoogle Scholar
  225. 225.
    Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173:253–261.  https://doi.org/10.1007/s002030000137CrossRefPubMedGoogle Scholar
  226. 226.
    Wartmann T, Stephan UW, Bube I et al (2002) Post-translational modifications of the AFET3 gene product-a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans. Yeast 19:849–862.  https://doi.org/10.1002/yea.880CrossRefPubMedGoogle Scholar
  227. 227.
    Kunze G, Kunze I (1996) Arxula adeninivorans. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 389–409CrossRefGoogle Scholar
  228. 228.
    Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163.  https://doi.org/10.1007/s002940050322CrossRefGoogle Scholar
  229. 229.
    Wartmann T, Böer E, Pico AH et al (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369.  https://doi.org/10.1016/S1567-1356(02)00086-7CrossRefPubMedGoogle Scholar
  230. 230.
    Wartmann T, Stoltenburg R, Böer E et al (2003) The ALEU2 gene—a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232.  https://doi.org/10.1016/S1567-1356(02)00190-3CrossRefGoogle Scholar
  231. 231.
    Terentiev Y, Pico AH, Böer E et al (2004) A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J Ind Microbiol Biotechnol 31:223–228.  https://doi.org/10.1007/s10295-004-0142-9CrossRefGoogle Scholar
  232. 232.
    Böer E, Piontek M, Kunze G (2009) Xplor® 2—an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 84:583–594.  https://doi.org/10.1007/s00253-009-2167-5CrossRefGoogle Scholar
  233. 233.
    Wartmann T, Rösel H, Kunze I et al (1998) AILV1 gene from the yeast Arxula adeninivorans LS3—a new selective transformation marker. Yeast 14:1017–1025.  https://doi.org/10.1002/(SICI)1097-0061(199808)14:11<1017::AID-YEA314>3.0.CO;2-0CrossRefGoogle Scholar
  234. 234.
    Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624.  https://doi.org/10.1007/s002530000444CrossRefGoogle Scholar
  235. 235.
    Müller S, Sandal T, Kamp-Hansen P et al (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283.  https://doi.org/10.1002/(SICI)1097-0061(1998100)14:14<1267::AID-YEA327>3.0.CO;2-2CrossRefGoogle Scholar
  236. 236.
    Hahn T, Tag K, Riedel K et al (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21:2078–2085.  https://doi.org/10.1016/j.bios.2005.10.019CrossRefGoogle Scholar
  237. 237.
    Wartmann T, Bellebna C, Böer E et al (2003) The constitutive AHSB4 promoter—a novel component of the Arxula adeninivorans-based expression platform. Appl Microbiol Biotechnol 62:528–535.  https://doi.org/10.1007/s00253-003-1323-6CrossRefGoogle Scholar
  238. 238.
    El Fiki A, El Metabteb G, Bellebna C et al (2007) The Arxula adeninivorans ATAL gene encoding transaldolase-gene characterization and biotechnological exploitation. Appl Microbiol Biotechnol 74:1292–1299.  https://doi.org/10.1007/s00253-006-0785-8CrossRefGoogle Scholar
  239. 239.
    Steinborn G, Gellissen G, Kunze G (2005) Assessment of Hansenula polymorpha and Arxula adeninivorans-derived rDNA-targeting elements for the design of Arxula adeninivorans expression vectors. FEMS Yeast Res 5:1047–1054.  https://doi.org/10.1016/j.femsyr.2005.07.005CrossRefGoogle Scholar
  240. 240.
    Steinborn G, Wartmann T, Gellissen G, Kunze G (2007) Construction of an Arxula adeninivorans host-vector system based on trp1 complementation. J Biotechnol 127:392–401.  https://doi.org/10.1016/j.jbiotec.2006.07.026CrossRefGoogle Scholar
  241. 241.
    Steinborn G, Gellissen G, Kunze G (2007) A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res 7:1197–1205.  https://doi.org/10.1111/j.1567-1364.2007.00280.xCrossRefPubMedGoogle Scholar
  242. 242.
    Steinborn G, Böer E, Scholz A et al (2006) Application of a wide-range yeast vector (CoMed™) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts. Microb Cell Factories 5:33.  https://doi.org/10.1186/1475-2859-5-33CrossRefGoogle Scholar
  243. 243.
    Álvaro-Benito M, Fernández-Lobato M, Baronian K, Kunze G (2013) Assessment of Schwanniomyces occidentalis as a host for protein production using the wide-range Xplor®2 expression platform. Appl Microbiol Biotechnol 97:4443–4456.  https://doi.org/10.1007/s00253-012-4527-9CrossRefGoogle Scholar
  244. 244.
    Böer E, Steinborn G, Matros A et al (2007) Production of interleukin-6 in Arxula adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae by applying the wide-range yeast vector (CoMed™) system to simultaneous comparative assessment. FEMS Yeast Res 7:1181–1187.  https://doi.org/10.1111/j.1567-1364.2007.00254.xCrossRefGoogle Scholar
  245. 245.
    Böer E, Wartmann T, Luther B et al (2004) Characterization of the AINV gene and the encoded invertase from the dimorphic yeast Arxula adeninivorans. Antonie Van Leeuwenhoek 86:121–134.  https://doi.org/10.1023/B:ANTO.0000036135.69810.dfCrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Böer E, Mock HP, Bode R et al (2005) An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast 22:523–535.  https://doi.org/10.1002/yea.1230CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Kaur P, Lingner A, Singh B et al (2007) APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. Antonie Van Leeuwenhoek 91:45–55.  https://doi.org/10.1007/s10482-006-9094-6CrossRefGoogle Scholar
  248. 248.
    Böer E, Bode R, Mock H-P et al (2009) Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 26:323–337.  https://doi.org/10.1002/yea.1669CrossRefGoogle Scholar
  249. 249.
    Bischoff F, Litwińska K, Cordes A et al (2015) Three new cutinases from the yeast Arxula adeninivorans that are suitable for biotechnological applications. Appl Environ Microbiol 81:5497–5510.  https://doi.org/10.1128/AEM.00894-15CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Minocha N, Kaur P, Satyanarayana T, Kunze G (2007) Acid phosphatase production by recombinant Arxula adeninivorans. Appl Microbiol Biotechnol 76:387–393.  https://doi.org/10.1007/s00253-007-1021-xCrossRefGoogle Scholar
  251. 251.
    Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177.  https://doi.org/10.1002/yea.2954CrossRefGoogle Scholar
  252. 252.
    Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116.  https://doi.org/10.1016/j.jbiotec.2016.02.023CrossRefGoogle Scholar
  253. 253.
    Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis-a review. Appl Microbiol Biotechnol 41:1–3.  https://doi.org/10.1007/BF00166072CrossRefGoogle Scholar
  254. 254.
    Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44.  https://doi.org/10.1038/nature02579CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Chen XJ (1996) Low- and high-copy-number yeast Kluyveromyces lactis shuttle vectors for replication in the budding. Gene 172:131–136CrossRefGoogle Scholar
  256. 256.
    Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390PubMedPubMedCentralGoogle Scholar
  257. 257.
    van Ooyen AJJ, Dekker P, Huang M et al (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392.  https://doi.org/10.1111/j.1567-1364.2006.00049.xCrossRefGoogle Scholar
  258. 258.
    Chen XJ, Saliola M, Falcone C et al (1986) Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res 14:4471–4481CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Bianchi MM, Falcone C, Re CX et al (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1. Curr Genet 12:185–192.  https://doi.org/10.1007/BF00436877CrossRefGoogle Scholar
  260. 260.
    Bianchi MM (1992) Site-specific recombination of the circular 2 microns-like plasmid pKD1 requires integrity of the recombinase gene A and of the partitioning genes B and C. J Bacteriol 174:6703–6706CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Fleer R, Chen XJ, Amellal N et al (1991) High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis. Gene 107:285–295.  https://doi.org/10.1016/0378-1119(91)90329-ACrossRefGoogle Scholar
  262. 262.
    Hsieh H-P, Da Silva NA (1998) Partial-pKD1 plasmids provide enhanced structural stability for heterologous protein production in Kluyveromyces lactis. Appl Microbiol Biotechnol 49:411–416.  https://doi.org/10.1007/s002530051191CrossRefGoogle Scholar
  263. 263.
    Morlino GB, Tizzani L, Fleer R et al (1999) Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl Environ Microbiol 65:4808–4813PubMedPubMedCentralGoogle Scholar
  264. 264.
    Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Curr Genet 16:95–98.  https://doi.org/10.1007/BF00393401CrossRefGoogle Scholar
  265. 265.
    Das S, Hollenberg CP (1982) A high-frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet 6:123–128.  https://doi.org/10.1007/BF00435211CrossRefGoogle Scholar
  266. 266.
    Fabiani L, Aragona M, Frontali L (1990) Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis. Yeast 6:69–76.  https://doi.org/10.1002/yea.320060108CrossRefGoogle Scholar
  267. 267.
    Sreekrishna K, Webster TD, Dickson RC (1984) Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn905. Gene 28:73–81.  https://doi.org/10.1016/0378-1119(84)90089-1CrossRefGoogle Scholar
  268. 268.
    Das S, Breunig KD, Hollenberg CP (1985) A positive regulatory element is involved in the induction of the beta-galactosidase gene from Kluyveromyces lactis. EMBO J 4:793–798CrossRefPubMedPubMedCentralGoogle Scholar
  269. 269.
    Strasser AWM, Selk R, Dohmen RJ et al (1989) Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur J Biochem 184:699–706.  https://doi.org/10.1111/j.1432-1033.1989.tb15069.xCrossRefGoogle Scholar
  270. 270.
    Bergkamp RJM, Kool IM, Geerse RH, Planta RJ (1992) Multiple-copy integration of the -galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curt Genet 21:365–370.  https://doi.org/10.1007/BF00351696CrossRefGoogle Scholar
  271. 271.
    Heus JJ, Zonneveld BJM, Steensma HY, Van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517–522.  https://doi.org/10.1007/BF00327022CrossRefGoogle Scholar
  272. 272.
    van der Vlugt-Bergmans CJB, van Ooyen AJJ (1999) Expression cloning in Kluyveromyces lactis. Biotechnol Tech 13:87–92.  https://doi.org/10.1023/A:1008864118362CrossRefGoogle Scholar
  273. 273.
    Prior C, Mamessier P, Fukuhara H et al (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13:3882–3889.  https://doi.org/10.1128/MCB.13.7.3882CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Iwata T, Tanaka R, Suetsugu M et al (2004) Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis. Biotechnol Lett 26:1803–1808.  https://doi.org/10.1007/s10529-004-4614-9CrossRefGoogle Scholar
  275. 275.
    van den Berg JA, van der Laken KJ, van Ooyen AJJ et al (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8:135–139.  https://doi.org/10.1038/nbt0290-135CrossRefGoogle Scholar
  276. 276.
    Mustilli AC, Izzo E, Houghton M, Galeotti CL (1999) Comparison of secretion of a hepatitis C virus glycoprotein in Saccharomyces cerevisiae and Kluyveromyces lactis. Res Microbiol 150:179–187.  https://doi.org/10.1016/S0923-2508(99)80034-5CrossRefGoogle Scholar
  277. 277.
    Rossolini GM, Riccio ML, Gallo E, Galeotti CL (1992) Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene 119:75–81.  https://doi.org/10.1016/0378-1119(92)90068-ZCrossRefGoogle Scholar
  278. 278.
    Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098.  https://doi.org/10.1128/AEM.71.11.7092-7098.2005CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Dickson RC, Markin JS (1980) Physiological studies of β-galactosidase induction in Kluyveromyces lactis. J Bacteriol 142:777–785PubMedPubMedCentralGoogle Scholar
  280. 280.
    Dickson RC, Markin JS (1978) Molecular cloning and expression in E. coli of a yeast gene coding for beta-galactosidase. Cell 15:123–130CrossRefGoogle Scholar
  281. 281.
    Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136.  https://doi.org/10.1016/j.fgb.2015.12.001CrossRefGoogle Scholar
  282. 282.
    Tokunaga M, Ishibashi M, Tatsuda D, Tokunaga H (1997) Secretion of mouse α-amylase from Kluyveromyces lactis. Yeast 13:699–706CrossRefGoogle Scholar
  283. 283.
    Rocha SN, Abrahao-Neto J, Cerdan ME et al (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:4.  https://doi.org/10.1186/1475-2859-9-4CrossRefGoogle Scholar
  284. 284.
    Rocha SN, Abrahão-Neto J, Cerdán ME et al (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Factories 9:4.  https://doi.org/10.1186/1475-2859-9-4CrossRefGoogle Scholar
  285. 285.
    Madhavan A, Sukumaran RK (2015) Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem Eng J 102:31–37.  https://doi.org/10.1016/j.bej.2015.03.008CrossRefGoogle Scholar
  286. 286.
    Fermiñán E, Domínguez A (1998) Heterologous protein secretion directed by a repressible acid phosphatase system of Kluyveromyces lactis: characterization of upstream region-activating sequences in the KlPHO5 gene. Appl Environ Microbiol 64:2403–2408PubMedPubMedCentralGoogle Scholar
  287. 287.
    Madhavan A, Sukumaran RK (2014) Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. Bioresour Technol 165:302–308.  https://doi.org/10.1016/j.biortech.2014.03.002CrossRefGoogle Scholar
  288. 288.
    Amore A, Amoresano A, Birolo L et al (2012) A family GH51 α-l-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Appl Microbiol Biotechnol 94:995–1006.  https://doi.org/10.1007/s00253-011-3678-4CrossRefGoogle Scholar
  289. 289.
    Barth G, Gaillardin C (1996) Yarrowia lipolytica BT—nonconventional yeasts in biotechnology: a handbook. In: Wolf K (ed) . Springer Berlin Heidelberg, Berlin, Heidelberg, pp 313–388CrossRefGoogle Scholar
  290. 290.
    Groenewald M, Boekhout T, Neuveglise C et al (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206.  https://doi.org/10.3109/1040841X.2013.770386CrossRefGoogle Scholar
  291. 291.
    Zinjarde SS (2014) Food-related applications of Yarrowia lipolytica. Food Chem 152:1–10.  https://doi.org/10.1016/j.foodchem.2013.11.117CrossRefGoogle Scholar
  292. 292.
    Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418.  https://doi.org/10.1002/yea.2921CrossRefGoogle Scholar
  293. 293.
    Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865.  https://doi.org/10.1007/s00253-009-2156-8CrossRefGoogle Scholar
  294. 294.
    Xue Z, Sharpe PL, Hong S-P et al (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740CrossRefGoogle Scholar
  295. 295.
    Grenfell-Lee D, Zeller S, Cardoso R, Pucaj K (2014) The safety of beta-carotene from Yarrowia lipolytica. Food Chem Toxicol 65:1–11.  https://doi.org/10.1016/j.fct.2013.12.010CrossRefGoogle Scholar
  296. 296.
    Tiels P, Baranova E, Piens K et al (2012) A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30:1225–1231CrossRefPubMedGoogle Scholar
  297. 297.
    Pignède G, Wang H-J, Fudalej F et al (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289.  https://doi.org/10.1128/AEM.66.8.3283-3289.2000CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Davidow LSDJ (1984) Process for transformation of Yarrowia lipolytica. US Patent Application US4880741Google Scholar
  299. 299.
    Gaillardin C, Heslot HRA (1984) Vecteurs de transformation de la levure Yarrowia lipolytica, procédé de transformation et levure transformée. French Patent Application FR2566424Google Scholar
  300. 300.
    Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99:4559–4577.  https://doi.org/10.1007/s00253-015-6624-zCrossRefGoogle Scholar
  301. 301.
    Boisramé A, Kabani M, Beckerich J-M et al (1998) Interaction of Kar2p and Sls1p is required for efficient co-translational translocation of secreted proteins in the yeast Yarrowia lipolytica. J Biol Chem 273:30903–30908.  https://doi.org/10.1074/jbc.273.47.30903CrossRefPubMedGoogle Scholar
  302. 302.
    Kim JW, Park TJ, Ryu DD, Kim JY (2000) High cell density culture of Yarrowia lipolytica using a one-step feeding process. Biotechnol Prog 16:657–660.  https://doi.org/10.1021/bp000037nCrossRefPubMedGoogle Scholar
  303. 303.
    Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237CrossRefPubMedGoogle Scholar
  304. 304.
    Liu L, Alper HS (2014) Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc 2:e00652–e00614.  https://doi.org/10.1128/genomeA.00652-14CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Fournier P, Abbas A, Chasles M et al (1993) Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A 90:4912–4916CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Matsuoka M, Matsubara M, Daidoh H et al (1993) Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Mol Gen Genet MGG 237:327–333.  https://doi.org/10.1007/BF00279435CrossRefPubMedGoogle Scholar
  307. 307.
    Vernis L, Abbas A, Chasles M et al (1997) An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica. Mol Cell Biol 17:1995–2004CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Liu L, Otoupal P, Pan A, Alper HS (2014) Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Res 14:1124–1127.  https://doi.org/10.1111/1567-1364.12201CrossRefPubMedGoogle Scholar
  309. 309.
    Richard G-F, Kerrest A, Lafontaine I, Dujon B (2005) Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol Biol Evol 22:1011–1023.  https://doi.org/10.1093/molbev/msi083CrossRefPubMedGoogle Scholar
  310. 310.
    Verbeke J, Beopoulos A, Nicaud J-M (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35:571–576.  https://doi.org/10.1007/s10529-012-1107-0CrossRefPubMedGoogle Scholar
  311. 311.
    Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77:7905–7914.  https://doi.org/10.1128/AEM.05763-11CrossRefPubMedPubMedCentralGoogle Scholar
  312. 312.
    Nicaud JM, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16:253–260CrossRefPubMedGoogle Scholar
  313. 313.
    Gaillardin C, Ribet AM (1987) LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet 11:369–375CrossRefPubMedGoogle Scholar
  314. 314.
    Fickers P, Le Dall MT, Gaillardin C et al (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55:727–737CrossRefPubMedGoogle Scholar
  315. 315.
    Le Dall MT, Nicaud JM, Gaillardin C (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26:38–44CrossRefGoogle Scholar
  316. 316.
    Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase of Candida lipolytica. Agric Biol Chem 40:1087–1092.  https://doi.org/10.1080/00021369.1976.10862177CrossRefGoogle Scholar
  317. 317.
    Ogrydziak DM, Scharf SJ (1982) Alkaline extracellular protease produced by Saccharomycopsis lipolytica CX161-1B. J Gen Microbiol 128:1225–1234.  https://doi.org/10.1099/00221287-128-6-1225CrossRefPubMedGoogle Scholar
  318. 318.
    Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1994) Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 14:327–338CrossRefPubMedPubMedCentralGoogle Scholar
  319. 319.
    Davidow LS, DeZeeuw JR, Franke AE (1990) Expression and secretion of heterologous proteins by Yarrowia lipolytica transformants. US Patent ​4937189AGoogle Scholar
  320. 320.
    Nicaud JM, Fournier P, La Bonnardiere C et al (1991) Use of ars18 based vectors to increase protein production in Yarrowia lipolytica. J Biotechnol 19:259–270CrossRefPubMedGoogle Scholar
  321. 321.
    Hamsa PV, Chattoo BB (1994) Cloning and growth-regulated expression of the gene encoding the hepatitis B virus middle surface antigen in Yarrowia lipolytica. Gene 143:165–170CrossRefPubMedGoogle Scholar
  322. 322.
    Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216Google Scholar
  323. 323.
    Nicaud J-M, Madzak C, van den Broek P et al (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2:371–379Google Scholar
  324. 324.
    Dominguez A, Ferminan E, Sanchez M et al (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1:131–142PubMedGoogle Scholar
  325. 325.
    Juretzek T, Wang H-J, Nicaud J-M et al (2000) Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol Bioprocess Eng 5:320–326.  https://doi.org/10.1007/BF02942206CrossRefGoogle Scholar
  326. 326.
    Fabre E, Tharaud C, Gaillardin C (1992) Intracellular transit of a yeast protease is rescued by trans-complementation with its prodomain. J Biol Chem 267:15049–15055PubMedGoogle Scholar
  327. 327.
    Fabre E, Nicaud JM, Lopez MC, Gaillardin C (1991) Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J Biol Chem 266:3782–3790PubMedGoogle Scholar
  328. 328.
    Wood V, Gwilliam R, Rajandream M-A et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880.  https://doi.org/10.1038/nature724CrossRefPubMedGoogle Scholar
  329. 329.
    Sasaki M, Idiris A, Tada A et al (2008) The gap-filling sequence on the left arm of chromosome 2 in fission yeast Schizosaccharomyces pombe. Yeast 25:673–679.  https://doi.org/10.1002/yea.1613CrossRefPubMedGoogle Scholar
  330. 330.
    Sasaki M, Kumagai H, Takegawa K, Tohda H (2013) Characterization of genome-reduced fission yeast strains. Nucleic Acids Res 41:5382–5399.  https://doi.org/10.1093/nar/gkt233CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Ballou CE, Ballou L, Ball G (1994) Schizosaccharomyces pombe glycosylation mutant with altered cell surface properties. Proc Natl Acad Sci U S A 91:9327–9331CrossRefPubMedPubMedCentralGoogle Scholar
  332. 332.
    Siam R, Dolan WP, Forsburg SL (2004) Choosing and using Schizosaccharomyces pombe plasmids. Methods 33:189–198.  https://doi.org/10.1016/j.ymeth.2003.11.013CrossRefPubMedGoogle Scholar
  333. 333.
    Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823CrossRefPubMedGoogle Scholar
  334. 334.
    Wright AP, Maundrell K, Shall S (1986) Transformation of Schizosaccharomyces pombe by non-homologous, unstable integration of plasmids in the genome. Curr Genet 10:503–508CrossRefPubMedGoogle Scholar
  335. 335.
    Hayles J, Nurse P (1992) Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 26:373–402.  https://doi.org/10.1146/annurev.ge.26.120192.002105CrossRefPubMedGoogle Scholar
  336. 336.
    Burke JD, Gould KL (1994) Molecular cloning and characterization of the Schizosaccharomyces pombe his3 gene for use as a selectable marker. Mol Gen Genet MGG 242:169–176.  https://doi.org/10.1007/BF00391010CrossRefPubMedGoogle Scholar
  337. 337.
    Barbet N, Muriel WJ, Carr AM (1992) Versatile shuttle vectors and genomic libraries for use with Schizosaccharomyces pombe. Gene 114:59–66CrossRefPubMedGoogle Scholar
  338. 338.
    Okazaki K, Okazaki N, Kume K et al (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res 18:6485–6489CrossRefPubMedPubMedCentralGoogle Scholar
  339. 339.
    Keeney JB, Boeke JD (1994) Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136:849–856PubMedPubMedCentralGoogle Scholar
  340. 340.
    Bach ML (1987) Cloning and expression of the OMP decarboxylase gene URA4 from Schizosaccharomyces pombe. Curr Genet 12:527–534CrossRefPubMedGoogle Scholar
  341. 341.
    Kikuchi Y, Kitazawa Y, Shimatake H, Yamamoto M (1988) The primary structure of the leu1+ gene of Schizosaccharomyces pombe. Curr Genet 14:375–379CrossRefPubMedGoogle Scholar
  342. 342.
    Fennessy D, Grallert A, Krapp A et al (2014) Extending the Schizosaccharomyces pombe molecular genetic toolbox. PLoS One 9:e97683CrossRefPubMedPubMedCentralGoogle Scholar
  343. 343.
    Bahler J, Wu JQ, Longtine MS et al (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951.  https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-YCrossRefPubMedGoogle Scholar
  344. 344.
    Burland TG, Pallotta D, Tardif MC et al (1991) Fission yeast promoter-probe vectors based on hygromycin resistance. Gene 100:241–245.  https://doi.org/10.1016/0378-1119(91)90374-KCrossRefPubMedGoogle Scholar
  345. 345.
    Hentges P, Van Driessche B, Tafforeau L et al (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019.  https://doi.org/10.1002/yea.1291CrossRefPubMedGoogle Scholar
  346. 346.
    Russell PR, Hall BD (1983) The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe. J Biol Chem 258:143–149PubMedGoogle Scholar
  347. 347.
    Gmunder H, Kohli J (1989) Cauliflower mosaic virus promoters direct efficient expression of a bacterial G418 resistance gene in Schizosaccharomyces pombe. Mol Gen Genet 220:95–101CrossRefPubMedGoogle Scholar
  348. 348.
    Faryar K, Gatz C (1992) Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr Genet 21:345–349CrossRefPubMedGoogle Scholar
  349. 349.
    Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130.  https://doi.org/10.1016/0378-1119(93)90551-DCrossRefPubMedGoogle Scholar
  350. 350.
    Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265:10857–10864PubMedGoogle Scholar
  351. 351.
    Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123:131–136.  https://doi.org/10.1016/0378-1119(93)90552-ECrossRefGoogle Scholar
  352. 352.
    Hoffman CS, Winston F (1989) A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene 84:473–479.  https://doi.org/10.1016/0378-1119(89)90523-4CrossRefGoogle Scholar
  353. 353.
    Iacovoni JS, Russell P, Gaits F (1999) A new inducible protein expression system in fission yeast based on the glucose-repressed inv1 promoter. Gene 232:53–58.  https://doi.org/10.1016/S0378-1119(99)00116-XCrossRefGoogle Scholar
  354. 354.
    Watt S, Mata J, Lopez-Maury L et al (2008) urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 3:e1428.  https://doi.org/10.1371/journal.pone.0001428CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Bellemare DR, Sanschagrin M, Beaudoin J, Labbe S (2001) A novel copper-regulated promoter system for expression of heterologous proteins in Schizosaccharomyces pombe. Gene 273:191–198CrossRefGoogle Scholar
  356. 356.
    Giga-Hama Y (1997) Secretion of human interleukin-6 using the P-factor secretion ignal in Schizosaccharomyces pombe. In: Giga-Hama Y, Kumagai H (eds) Foreign gene expression in fission yeast: Schizosaccharomyces pombe. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 159–178CrossRefGoogle Scholar
  357. 357.
    Braspenning J, Meschede W, Marchini A et al (1998) Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of pho1+ acid phosphatase. Biochem Biophys Res Commun 245:166–171.  https://doi.org/10.1006/bbrc.1998.8402CrossRefGoogle Scholar
  358. 358.
    Kjaerulff S, Jensen MR (2005) Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336:974–982.  https://doi.org/10.1016/j.bbrc.2005.08.195CrossRefGoogle Scholar
  359. 359.
    Kjaerulff S, Muller S, Jensen MR (2005) Alternative protein secretion: the Mam1 ABC transporter supports secretion of M-factor linked GFP in fission yeast. Biochem Biophys Res Commun 338:1853–1859.  https://doi.org/10.1016/j.bbrc.2005.10.156CrossRefGoogle Scholar
  360. 360.
    Reed G, Nagodawithana TW (1991) Yeast technology. Van Nostrand Reinhold, New YorkGoogle Scholar
  361. 361.
    Johnson EA, Echavarri-erasun C (2011) Yeast biotechnology. In: The yeasts, a taxonomic study. Elsevier B.V, Amsterdam, pp 21–44CrossRefGoogle Scholar
  362. 362.
    Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. 2013Google Scholar
  363. 363.
    Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193.  https://doi.org/10.1002/yea.1154CrossRefPubMedGoogle Scholar
  364. 364.
    Boze H, Moutin G, Galzy P (1992) Production of food and fodder yeasts. Crit Rev Biotechnol 12:65–86CrossRefPubMedGoogle Scholar
  365. 365.
    Inskeep GC, Wiley AJ, Holdberry JM, Hughes LP (1951) Food yeast from sulfite liquor. Ind Eng Chem 43:1702–1711.  https://doi.org/10.1021/ie50500a013CrossRefGoogle Scholar
  366. 366.
    Kurtzman CP, Johnson CJ, Smiley MJ (1979) Determination of conspecificity of Candida utilis and Hansenula jadini through DNA reassociation. Mycologia 71:844–847CrossRefGoogle Scholar
  367. 367.
    Buerth C, Tielker D, Ernst JF (2016) Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 100:6981–6990.  https://doi.org/10.1007/s00253-016-7700-8CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Bekatorou A, Psarianos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415Google Scholar
  369. 369.
    Buerth C, Heilmann CJ, Klis FM et al (2011) Growth-dependent secretome of Candida utilis. Microbiology 157:2493–2503.  https://doi.org/10.1099/mic.0.049320-0CrossRefGoogle Scholar
  370. 370.
    Tamakawa H, Tomita Y, Yokoyama A et al (2013) Metabolomic and transcriptomic analysis for rate-limiting metabolic steps in xylose utilization by recombinant Candida utilis. Biosci Biotechnol Biochem 77:1441–1448.  https://doi.org/10.1271/bbb.130093CrossRefGoogle Scholar
  371. 371.
    Dworschack RG, Wickerham LJ (1961) Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. Appl Environ Microbiol 9:291–294Google Scholar
  372. 372.
    Belcarz A, Ginalska G, Lobarzewski J, Penel C (2002) The novel non-glycosylated invertase from Candida utilis ( the properties and the conditions of production and purification ). Biochim Biophys Acta 1594:40–53CrossRefGoogle Scholar
  373. 373.
    Wei G, Li Y, Du G, Chen J (2003) Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett 25:887–890CrossRefGoogle Scholar
  374. 374.
    Liang G, Liao X, Du G, Chen J (2008) Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. J Appl Microbiol 105:1432–1440.  https://doi.org/10.1111/j.1365-2672.2008.03892.xCrossRefGoogle Scholar
  375. 375.
    Kogan G, Sandula J, SImkovicova V (1993) Glucomannan from Candida utilis—structural investigation. Folia Microbiol (Praha) 38:219–224CrossRefGoogle Scholar
  376. 376.
    Ruszova E, Pavek S, Hajkova V et al (2008) Photoprotective effects of glucomannan isolated from Candida utilis. Carbohydr Res 343:501–511.  https://doi.org/10.1016/j.carres.2007.11.010CrossRefGoogle Scholar
  377. 377.
    Fujino S, Akiyama D, Akaboshi S et al (2006) Purification and characterization of phospholipase B from Candida utilis. Biosci Biotechnol Biochem 70:377–386.  https://doi.org/10.1271/bbb.70.377CrossRefGoogle Scholar
  378. 378.
    Hong Y-R, Chen Y-L, Farh L et al (2006) Recombinant Candida utilis for the production of biotin. Appl Microbiol Biotechnol 71:211–221.  https://doi.org/10.1007/s00253-005-0133-4CrossRefGoogle Scholar
  379. 379.
    Ikushima S, Fujii T, Kobayashi O (2009) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884.  https://doi.org/10.1271/bbb.80799CrossRefGoogle Scholar
  380. 380.
    Kondo K, Saito T, Kajiwara S et al (1995) A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177:7171–7177.  https://doi.org/10.1128/jb.177.24.7171-7177.1995CrossRefPubMedPubMedCentralGoogle Scholar
  381. 381.
    Kondo K, Miura Y, Sone H et al (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457.  https://doi.org/10.1038/nbt0597-453CrossRefGoogle Scholar
  382. 382.
    Wei W, Hong-Lan Y, HuiFang B et al (2010) The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. Mol Biol Rep 37:2615–2620.  https://doi.org/10.1007/s11033-009-9786-xCrossRefGoogle Scholar
  383. 383.
    Miura Y, Kettoku M, Kato M et al (1999) High level production of thermostable α-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis. J Mol Microbiol Biotechnol 1:129–134Google Scholar
  384. 384.
    Miura Y, Kondo K, Shimada H et al (1998) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58:306–308.  https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<306::AID-BIT29>3.0.CO;2-8CrossRefGoogle Scholar
  385. 385.
    Shimada H, Kondo K, Fraser PD et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680PubMedPubMedCentralGoogle Scholar
  386. 386.
    Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein- engineered xylose reductase and xylitol dehydrogenase ethanol production from xylose by a recombinant Candida utilis. Biosci Biotechnol Biochem 75:1994–2000.  https://doi.org/10.1271/bbb.110426CrossRefGoogle Scholar
  387. 387.
    Tamakawa H, Ikushima S, Yoshida S (2012) Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113:73–75.  https://doi.org/10.1016/j.jbiosc.2011.09.002CrossRefGoogle Scholar
  388. 388.
    Ikushima S, Fujii T, Kobayashi O et al (2009) Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci Biotechnol Biochem 73:1818–1824.  https://doi.org/10.1271/bbb.90186CrossRefGoogle Scholar
  389. 389.
    Kunigo M, Buerth C, Tielker D, Ernst JF (2013) Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 97:7357–7368.  https://doi.org/10.1007/s00253-013-4890-1CrossRefGoogle Scholar
  390. 390.
    Kunigo M, Buerth C, Ernst JF (2015) Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis. Appl Microbiol Biotechnol 99:8055–8064.  https://doi.org/10.1007/s00253-015-6703-1CrossRefGoogle Scholar
  391. 391.
    Tamakawa H, Mita T, Yokoyama A et al (2013) Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol 97:6231–6239.  https://doi.org/10.1007/s00253-013-4964-0CrossRefGoogle Scholar
  392. 392.
    Ikushima S, Minato T, Kondo K (2009) Identification and application of novel autonomously replicating sequences (ARSs) for promoter-cloning and co-transformation in Candida utilis. Biosci Biotechnol Biochem 73:152–159.  https://doi.org/10.1271/bbb.80568CrossRefGoogle Scholar
  393. 393.
    Bonkova H, Osadska M, Krahulec J et al (2014) Upstream regulatory regions controlling the expression of the Candida utilis maltase gene. J Biotechnol 189:136–142.  https://doi.org/10.1016/j.jbiotec.2014.09.006CrossRefGoogle Scholar
  394. 394.
    Iwakiri R, Noda Y, Adachi H et al (2006) Isolation and characterization of promoters suitable for a multidrug-resistant marker CuYAP1 in the yeast Candida utilis. Yeast 23:23–34.  https://doi.org/10.1002/yea.1335CrossRefGoogle Scholar
  395. 395.
    Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263.  https://doi.org/10.1007/BF01201874CrossRefGoogle Scholar
  396. 396.
    Jeong H, Lee DH, Kim SH et al (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585.  https://doi.org/10.1128/EC.00260-12CrossRefPubMedPubMedCentralGoogle Scholar
  397. 397.
    Belloch C, Barrio E, García MD, Querol A (1998) Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14:1341–1354.  https://doi.org/10.1002/(SICI)1097-0061(199811)14:15<1341::AID-YEA328>3.0.CO;2-UCrossRefGoogle Scholar
  398. 398.
    Lane MM, Burke N, Karreman R et al (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100:507–519.  https://doi.org/10.1007/s10482-011-9606-xCrossRefGoogle Scholar
  399. 399.
    Rouwenhorst RJ, Visser LE, van der Baan AA et al (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137PubMedPubMedCentralGoogle Scholar
  400. 400.
    Martins DBG, de Souza CG Jr, Simões DA, de Morais MA Jr (2002) The β-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol 44:379–382.  https://doi.org/10.1007/s00284-001-0052-2CrossRefPubMedGoogle Scholar
  401. 401.
    Rocha SN, Abrahão-Neto J, Cerdán ME et al (2011) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89:375–385.  https://doi.org/10.1007/s00253-010-2869-8CrossRefPubMedGoogle Scholar
  402. 402.
    Lee K-S, Kim J-S, Heo P et al (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041.  https://doi.org/10.1007/s00253-012-4306-7CrossRefPubMedGoogle Scholar
  403. 403.
    Bragança CRS, Colombo LT, Roberti AS et al (2015) Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1). Appl Microbiol Biotechnol 99:1191–1203.  https://doi.org/10.1007/s00253-014-5963-5CrossRefPubMedGoogle Scholar
  404. 404.
    Yang C, Hu S, Zhu S et al (2015) Characterizing yeast promoters used in Kluyveromyces marxianus. World J Microbiol Biotechnol 31:1641–1646.  https://doi.org/10.1007/s11274-015-1899-xCrossRefPubMedGoogle Scholar
  405. 405.
    Nonklang S, Abdel-Banat BMA, Cha-aim K et al (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521.  https://doi.org/10.1128/AEM.01854-08CrossRefPubMedPubMedCentralGoogle Scholar
  406. 406.
    Yamamoto H, Shima T, Yamaguchi M et al (2015) The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J Biol Chem 290:29506–29518.  https://doi.org/10.1074/jbc.M115.684233CrossRefPubMedPubMedCentralGoogle Scholar
  407. 407.
    de Souza CG Jr, Ledingham WM, de Morais MA Jr (2001) Utilisation of cheese whey as an alternative growth medium for recombinant strains of Kluyveromyces marxianus. Biotechnol Lett 23:1413–1416.  https://doi.org/10.1023/A:1011617914709CrossRefGoogle Scholar
  408. 408.
    Bartkevic̆iūtė D, S̆ieks̆telė R, Sasnauskas K (2000) Heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1) using versatile autonomously replicating vector for a wide range of host. Enzym Microb Technol 26:653–656.  https://doi.org/10.1016/S0141-0229(00)00155-1CrossRefGoogle Scholar
  409. 409.
    Bergkamp RJM, Bootsman TC, Toschka HY et al (1993) Expression of an α-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 40:309–317.  https://doi.org/10.1007/BF00170386CrossRefPubMedGoogle Scholar
  410. 410.
    Raimondi S, Uccelletti D, Matteuzzi D et al (2008) Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol 77:1269–1277.  https://doi.org/10.1007/s00253-007-1270-8CrossRefPubMedGoogle Scholar
  411. 411.
    Raimondi S, Uccelletti D, Amaretti A et al (2010) Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl Microbiol Biotechnol 86:871–878.  https://doi.org/10.1007/s00253-009-2353-5CrossRefPubMedGoogle Scholar
  412. 412.
    Raimondi S, Zanni E, Amaretti A et al (2013) Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Factories 12:34.  https://doi.org/10.1186/1475-2859-12-34CrossRefGoogle Scholar
  413. 413.
    Iborra F (1993) High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Curr Genet 24:181–183.  https://doi.org/10.1007/BF00324685CrossRefPubMedGoogle Scholar
  414. 414.
    Yanase S, Hasunuma T, Yamada R et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388.  https://doi.org/10.1007/s00253-010-2784-zCrossRefPubMedGoogle Scholar
  415. 415.
    Goshima T, Negi K, Tsuji M et al (2013) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551–554.  https://doi.org/10.1016/j.jbiosc.2013.05.010CrossRefPubMedGoogle Scholar
  416. 416.
    Lee JW, In JH, Park J-B et al (2017) Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for L-lactic acid production. J Biotechnol 241:81–86.  https://doi.org/10.1016/j.jbiotec.2016.11.015CrossRefPubMedGoogle Scholar
  417. 417.
    Heo P, Yang T-J, Chung S-C et al (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167:323–325.  https://doi.org/10.1016/j.jbiotec.2013.06.020CrossRefPubMedGoogle Scholar
  418. 418.
    Cheon Y, Kim J-S, Park J-B et al (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J Biotechnol 182–183:30–36.  https://doi.org/10.1016/j.jbiotec.2014.04.010CrossRefPubMedGoogle Scholar
  419. 419.
    Hoshida H, Murakami N, Suzuki A et al (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46.  https://doi.org/10.1002/yea.2993CrossRefPubMedGoogle Scholar
  420. 420.
    Chang J-J, Ho C-Y, Ho F-J et al (2012) PGASO: a synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels 5:53.  https://doi.org/10.1186/1754-6834-5-53CrossRefPubMedPubMedCentralGoogle Scholar
  421. 421.
    Yuan W, Zhao X, Chen L, Bai F (2013) Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Biotechnol Bioprocess Eng 18:721–727.  https://doi.org/10.1007/s12257-013-0026-9CrossRefGoogle Scholar
  422. 422.
    Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123.  https://doi.org/10.1016/j.jbiotec.2007.03.008CrossRefPubMedGoogle Scholar
  423. 423.
    Theron CW, Labuschagné M, Gudiminchi R et al (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566.  https://doi.org/10.1111/1567-1364.12142CrossRefPubMedGoogle Scholar
  424. 424.
    Zhou H-X, Xin F-H, Chi Z et al (2014) Inulinase production by the yeast Kluyveromyces marxianus with the disrupted MIG1 gene and the over-expressed inulinase gene. Process Biochem 49:1867–1874.  https://doi.org/10.1016/j.procbio.2014.08.001CrossRefGoogle Scholar
  425. 425.
    Juretzek T, Le Dall M-T, Mauersberger S et al (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113.  https://doi.org/10.1002/1097-0061(20010130)18:2<97::AID-YEA652>3.0.CO;2-UCrossRefGoogle Scholar
  426. 426.
    Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354.  https://doi.org/10.1007/s00253-008-1458-6CrossRefPubMedGoogle Scholar
  427. 427.
    Zhang B, Li L, Zhang J et al (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316.  https://doi.org/10.1007/s10295-013-1230-5CrossRefPubMedGoogle Scholar
  428. 428.
    Zhang J, Zhang B, Wang D et al (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201.  https://doi.org/10.1016/j.biortech.2013.10.109CrossRefPubMedGoogle Scholar
  429. 429.
    Zhang J, Zhang B, Wang D et al (2015) Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 31:140–152.  https://doi.org/10.1016/j.ymben.2015.07.008CrossRefPubMedGoogle Scholar
  430. 430.
    Matsuzaki C, Nakagawa A, Koyanagi T et al (2012) Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J Biosci Bioeng 113:604–607.  https://doi.org/10.1016/j.jbiosc.2011.12.007CrossRefPubMedGoogle Scholar
  431. 431.
    Kim HE, Qin R, Chae KS (2005) Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J Microbiol Biotechnol 15:447–450Google Scholar
  432. 432.
    Almeida C, Queirós O, Wheals A et al (2003) Acquisition of flocculation phenotype by Kluyveromyces marxianus when overexpressing GAP1 gene encoding an isoform of glyceraldehyde-3-phosphate dehydrogenase. J Microbiol Methods 55:433–440.  https://doi.org/10.1016/S0167-7012(03)00189-1CrossRefPubMedGoogle Scholar
  433. 433.
    Chang J-J, Ho F-J, Ho C-Y et al (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19.  https://doi.org/10.1186/1754-6834-6-19CrossRefPubMedPubMedCentralGoogle Scholar
  434. 434.
    Chen H-L, Chen Y-C, Lu M-YJ et al (2012) A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels 5:24.  https://doi.org/10.1186/1754-6834-5-24CrossRefPubMedPubMedCentralGoogle Scholar
  435. 435.
    Thomas DS, Davenport RR (1985) Zygosaccharomyces bailii—a profile of characteristics and spoilage activities. Food Microbiol 2:157–169.  https://doi.org/10.1016/S0740-0020(85)80008-3CrossRefGoogle Scholar
  436. 436.
    Cole MB, Keenan MH (1986) Synergistic effects of weak-acid preservatives and pH on the growth of Zygosaccharomyces bailii. Yeast 2:93–100.  https://doi.org/10.1002/yea.320020204CrossRefPubMedGoogle Scholar
  437. 437.
    Praphailong W, Fleet GH (1997) The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol 14:459–468.  https://doi.org/10.1006/fmic.1997.0106CrossRefGoogle Scholar
  438. 438.
    Dato L, Branduardi P, Passolunghi S et al (2010) Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res 10:894–908.  https://doi.org/10.1111/j.1567-1364.2010.00668.xCrossRefPubMedGoogle Scholar
  439. 439.
    Zuehlke JM, Petrova B, Edwards CG (2013) Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu Rev Food Sci Technol 4:57–78.  https://doi.org/10.1146/annurev-food-030212-182533CrossRefPubMedGoogle Scholar
  440. 440.
    Buchta V, Sláviková E, Vadkartiová R et al (1996) Zygosaccharomyces bailii as a potential spoiler of mustard. Food Microbiol 13:133–135.  https://doi.org/10.1006/fmic.1996.0017CrossRefGoogle Scholar
  441. 441.
    Toh-E A, Araki H, Utatsu I, Oshima Y (1984) Plasmids resembling 2-μm DNA in the osmotolerant yeasts Saccharomyces bailii and Saccharomyces bisporus. Microbiology 130:2527–2534CrossRefGoogle Scholar
  442. 442.
    Branduardi P, Valli M, Brambilla L et al (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res 4:493–504CrossRefPubMedGoogle Scholar
  443. 443.
    Vigentini I, Brambilla L, Branduardi P et al (2005) Heterologous protein production in Zygosaccharomyces bailii: physiological effects and fermentative strategies. FEMS Yeast Res 5:647–652.  https://doi.org/10.1016/j.femsyr.2004.11.006CrossRefGoogle Scholar
  444. 444.
    Paciello L, Landi C, De Alteriis E, Parascandola P (2012) Mathematical modeling as a tool to describe and optimize heterologous protein production by yeast cells in aerated fed-batch reactor. Chem Eng Trans 27:79–84.  https://doi.org/10.3303/CET1227014CrossRefGoogle Scholar
  445. 445.
    Passolunghi S, Riboldi L, Dato L et al (2010) Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb Cell Factories 9:7.  https://doi.org/10.1186/1475-2859-9-7CrossRefGoogle Scholar
  446. 446.
    Gallwitz D, Seidel R (1980) Molecular cloning of the actin gene from yeast Saccharomyces cerevisiae. Nucleic Acids Res 8:1043–1059CrossRefPubMedPubMedCentralGoogle Scholar
  447. 447.
    Williamson VM, Bennetzen J, Young ET et al (1980) Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature 283:214–216CrossRefPubMedGoogle Scholar
  448. 448.
    Bennetzens JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem 257:3018–3025Google Scholar
  449. 449.
    Denis CL, Ferguson J, Young ET (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J Biol Chem 258:1165–1171PubMedGoogle Scholar
  450. 450.
    Guarente L, Lalonde B, Gifford P et al (1984) Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 36:503–511.  https://doi.org/10.1016/0092-8674(84)90243-5CrossRefPubMedGoogle Scholar
  451. 451.
    Holland MJ, Holland JP, Thillg GP, Jackson KA (1981) The primary structures of two yeast enolase genes. J Biol Chem 256:1385–1395PubMedGoogle Scholar
  452. 452.
    McAlisters L, Holland MJ (1985) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027Google Scholar
  453. 453.
    McAlisters L, Holland MJ (1985) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15013–15018Google Scholar
  454. 454.
    Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose glycolytic flux. Mol Microbiol 16:157–167.  https://doi.org/10.1111/j.1365-2958.1995.tb02400.xCrossRefPubMedGoogle Scholar
  455. 455.
    Singh A, Chen EY, Lugovoy JM et al (1983) Saccharomyces cerevisiae contains two discrete genes coding for the alpha-factor pheromone. Nucleic Acids Res 11:4049–4063CrossRefPubMedPubMedCentralGoogle Scholar
  456. 456.
    Holland MJ, Holland JP (1978) Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry 17:4900–4907CrossRefPubMedGoogle Scholar
  457. 457.
    Dobson MJ, Tuite MF, Roberts NA et al (1982) Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucleic Acids Res 10:2625–2637CrossRefPubMedPubMedCentralGoogle Scholar
  458. 458.
    Hitzeman RA, Hagie FE, Hayflick JS et al (1982) The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res 10:7791–7808CrossRefPubMedPubMedCentralGoogle Scholar
  459. 459.
    Ogden JE, Stanway C, Kim S et al (1986) Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences. Mol Cell Biol 6:4335–4343CrossRefPubMedPubMedCentralGoogle Scholar
  460. 460.
    Nishizawa M, Araki R, Teranishi Y (1989) Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 9:442–451CrossRefPubMedPubMedCentralGoogle Scholar
  461. 461.
    Schirmaier F, Philippsen P (1984) Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae. EMBO J 3:3311–3315CrossRefPubMedPubMedCentralGoogle Scholar
  462. 462.
    Nagashima K, Kasai M, Nagata S, Kaziro Y (1986) Structure of the two genes for coding polypeptide chain elongation factor 1 (EF-1) from Saccharomyces cerevisiae. Gene 45:265–273.  https://doi.org/10.1016/0378-1119(86)90024-7CrossRefPubMedGoogle Scholar
  463. 463.
    Kim S, Mellor J, Kingsman AJ, Kingsman SM (1986) Multiple control elements in the TRP1 promoter of Saccharomyces cerevisiae. Mol Cell Biol 6:4251–4258CrossRefPubMedPubMedCentralGoogle Scholar
  464. 464.
    Beier DR, Young ET (1982) Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature 300:724–728CrossRefPubMedGoogle Scholar
  465. 465.
    Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci U S A 79:5342–5346CrossRefPubMedPubMedCentralGoogle Scholar
  466. 466.
    Butt TR, Sternberg EJ, Gormant JA et al (1984) Copper metallothionein of yeast, structure of the gene, and regulation of expression biochemistry. Proc Natl Acad Sci U S A 81:3332–3336CrossRefPubMedPubMedCentralGoogle Scholar
  467. 467.
    Karin M, Najariant R, Haslinger A et al (1984) Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc Natl Acad Sci U S A 81:337–341CrossRefPubMedPubMedCentralGoogle Scholar
  468. 468.
    Johnston M, Davis RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4:1440–1448CrossRefPubMedPubMedCentralGoogle Scholar
  469. 469.
    Fang F, Salmon K, Shen MWY et al (2011) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 28:123–136CrossRefPubMedGoogle Scholar
  470. 470.
    Kerjan P, Cherest H, Surdin-Kerjan Y (1986) Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Res 14:7861–7871CrossRefPubMedPubMedCentralGoogle Scholar
  471. 471.
    Nakao J, Miyanohara A, Toh-e A, Matsubara K (1986) Saccharomyces cerevisiae PH05 promoter region: location and function of the upstream activation site. Mol Cell Biol 6:2613–2623CrossRefPubMedPubMedCentralGoogle Scholar
  472. 472.
    Arima K, Oshima T, Kubota I et al (1983) The nucleotide sequence of the yeast PHO5gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res 11:1657–1672.  https://doi.org/10.1093/nar/11.6.1657CrossRefPubMedPubMedCentralGoogle Scholar
  473. 473.
    Kurjan J, Herskowitz I (1982) Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30:933–943.  https://doi.org/10.1016/0092-8674(82)90298-7CrossRefGoogle Scholar
  474. 474.
    Taussig R, Carlson M (1983) Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res 11:1943–1954.  https://doi.org/10.1093/nar/11.6.1943CrossRefPubMedPubMedCentralGoogle Scholar
  475. 475.
    Hofmann KJ, Schultz LD (1991) Mutations of the α-galactosidase signal peptide which greatly enhance secretion of heterologous proteins by yeast. Gene 101:105–111.  https://doi.org/10.1016/0378-1119(91)90230-9CrossRefGoogle Scholar
  476. 476.
    Baldari C, Murray JAH, Ghiara P et al (1987) A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1β in Saccharomyces cerevisiae. EMBO J 6:229–234.  https://doi.org/10.1002/j.1460-2075.1987.tb04743.xCrossRefPubMedPubMedCentralGoogle Scholar
  477. 477.
    Liang S, Zou C, Lin Y et al (2013) Identification and characterization of P GCW14: a novel, strong constitutive promoter of Pichia pastoris. Biotechnol Lett 35:1865–1871.  https://doi.org/10.1007/s10529-013-1265-8CrossRefPubMedPubMedCentralGoogle Scholar
  478. 478.
    de Almeida JRM, de Moraes LMP, Torres FAG (2005) Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast 22:725–737.  https://doi.org/10.1002/yea.1243CrossRefPubMedPubMedCentralGoogle Scholar
  479. 479.
    Koutz P, Davis GR, Stillman C et al (1989) Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5:167–177.  https://doi.org/10.1002/yea.320050306CrossRefGoogle Scholar
  480. 480.
    Ellis SB, Brust PF, Koutz PJ et al (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121CrossRefPubMedPubMedCentralGoogle Scholar
  481. 481.
    Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20:1097–1108.  https://doi.org/10.1002/yea.1028CrossRefGoogle Scholar
  482. 482.
    Delic M, Mattanovich D, Gasser B (2013) Repressible promoters - a novel tool to generate conditional mutants in Pichia pastoris. Microb Cell Factories 12:6.  https://doi.org/10.1186/1475-2859-12-6CrossRefGoogle Scholar
  483. 483.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefPubMedPubMedCentralGoogle Scholar
  484. 484.
    Oka C, Tanaka M, Muraki M et al (1999) Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63:1977–1983.  https://doi.org/10.1271/bbb.63.1977CrossRefPubMedGoogle Scholar
  485. 485.
    He Z, Huang Y, Qin Y et al (2012) Comparison of alpha-factor preprosequence and a classical mammalian signal peptide for secretion of recombinant xylanase xynB from yeast Pichia pastoris. J Microbiol Biotechnol 22:479–483CrossRefPubMedGoogle Scholar
  486. 486.
    Whittaker MM, Whittaker JW (2000) Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expr Purif 20:105–111.  https://doi.org/10.1006/prep.2000.1287CrossRefPubMedGoogle Scholar
  487. 487.
    Kottmeier K, Ostermann K, Bley T, Rodel G (2011) Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl Microbiol Biotechnol 91:133–141.  https://doi.org/10.1007/s00253-011-3246-yCrossRefPubMedPubMedCentralGoogle Scholar
  488. 488.
    Xiong R, Chen J, Chen J (2008) Secreted expression of human lysozyme in the yeast Pichia pastoris under the direction of the signal peptide from human serum albumin. Biotechnol Appl Biochem 51:129–134.  https://doi.org/10.1042/BA20070205CrossRefPubMedGoogle Scholar
  489. 489.
    Eiden-Plach A, Zagorc T, Heintel T et al (2004) Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Appl Environ Microbiol 70:961–966.  https://doi.org/10.1128/AEM.70.2.961-966.2004CrossRefPubMedPubMedCentralGoogle Scholar
  490. 490.
    Kato S, Ishibashi M, Tatsuda D et al (2001) Efficient expression, purification and characterization of mouse salivary alpha-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 18:643–655.  https://doi.org/10.1002/yea.714CrossRefGoogle Scholar
  491. 491.
    Raemaekers RJ, de Muro L, Gatehouse JA, Fordham-Skelton AP (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265:394–403CrossRefGoogle Scholar
  492. 492.
    Inokuma K, Bamba T, Ishii J et al (2016) Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide. Biotechnol Bioeng 113:2358–2366.  https://doi.org/10.1002/bit.26008CrossRefGoogle Scholar
  493. 493.
    Crawford K, Zaror I, Bishop RJ, Innis MA (1997) Pichia secretory leader for protein expression. WO1997012044 A2Google Scholar
  494. 494.
    Berardi E, Gambini A, Bellu AR (2003) ALG2, the Hansenula polymorpha isocitrate lyase gene. Yeast 20:803–811.  https://doi.org/10.1002/yea.1002CrossRefGoogle Scholar
  495. 495.
    Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322CrossRefGoogle Scholar
  496. 496.
    Ledeboer AM, Edens L, Maat J et al (1985) Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res 13:3063–3082.  https://doi.org/10.1093/nar/13.9.3063CrossRefPubMedPubMedCentralGoogle Scholar
  497. 497.
    Hollenberg CP, Janowiez ZA (1989) DNA-molecules coding for FMDH control regions and structured gene for a protein having FMDH-activity and their uses. EP 0299108 A1Google Scholar
  498. 498.
    Janowicz ZA, Eckart MR, Drewke C et al (1985) Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res 13:3043–3062.  https://doi.org/10.1093/nar/13.9.3043CrossRefPubMedPubMedCentralGoogle Scholar
  499. 499.
    Ávila J, González C, Brito N, Siverio JM (1998) Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem J 335:647–652CrossRefPubMedPubMedCentralGoogle Scholar
  500. 500.
    Hansen H, Didion T, Thiemann A et al (1992) Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. Mol Gen Genomics 235:269–278CrossRefGoogle Scholar
  501. 501.
    Faber KN, Haima P, Gietl C et al (1994) The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Proc Natl Acad Sci U S A 91:12985–12989CrossRefPubMedPubMedCentralGoogle Scholar
  502. 502.
    Rösel H, Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr Genet 28:360–366.  https://doi.org/10.1007/BF00326434CrossRefPubMedGoogle Scholar
  503. 503.
    Böer E, Wartmann T, Schmidt S et al (2005) Characterization of the AXDH gene and the encoded xylitol dehydrogenase from the dimorphic yeast Arxula adeninivorans. Antonie Van Leeuwenhoek 87:233–243.  https://doi.org/10.1007/s10482-004-3832-4CrossRefPubMedGoogle Scholar
  504. 504.
    Bui DM, Kunze I, Förster S et al (1996) Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 44:610–619.  https://doi.org/10.1007/BF00172493CrossRefGoogle Scholar
  505. 505.
    Bianchi MM, Tizzani L, Destruelle M et al (1996) The “petite-negative” yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol 19:27–36.  https://doi.org/10.1046/j.1365-2958.1996.346875.xCrossRefPubMedGoogle Scholar
  506. 506.
    Walton JD, Paquin CE, Kaneko K, Williamson VM (1986) Resistance to antimycin A in yeast by amplification of ADH4 on a linear, 42 kb palindromic plasmid. Cell 46:857–863.  https://doi.org/10.1016/0092-8674(86)90067-XCrossRefPubMedGoogle Scholar
  507. 507.
    Ferminan E, Dominguez A (1997) The KlPHO5 gene encoding a repressible acid phosphatase in the yeast Kluyveromyces lactis: cloning, sequencing and transcriptional analysis of the gene, and purification and properties of the enzyme. Microbiology 143:2615–2625.  https://doi.org/10.1099/00221287-143-8-2615CrossRefPubMedGoogle Scholar
  508. 508.
    Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002CrossRefPubMedPubMedCentralGoogle Scholar
  509. 509.
    Ongay-Larios L, Navarro-Olmos R, Kawasaki L et al (2007) Kluyveromyces lactis sexual pheromones. Gene structures and cellular responses to α-factor. FEMS Yeast Res 7:740–747.  https://doi.org/10.1111/j.1567-1364.2007.00249.xCrossRefPubMedGoogle Scholar
  510. 510.
    Chen X, Gao B, Shi W, Li Y (1992) Expression and secretion of human interferon alpha A in yeast Kluyveromyces lactis. Yi Chuan Xue Bao 19:284–288PubMedGoogle Scholar
  511. 511.
    Hong S-P, Seip J, Walters-Pollak D et al (2012) Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter. Yeast 29:59–72.  https://doi.org/10.1002/yea.1917CrossRefPubMedGoogle Scholar
  512. 512.
    Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9.  https://doi.org/10.1016/j.ymben.2012.08.007CrossRefPubMedGoogle Scholar
  513. 513.
    Franke A, Kaczmarek F, Eisenhard M et al (1988) Expression and secretion of bovine prochymosin in Yarrowia lipolytica. Dev Ind Microbiol 29:43–57Google Scholar
  514. 514.
    Sassi H, Delvigne F, Kar T et al (2016) Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb Cell Factories 15:159.  https://doi.org/10.1186/s12934-016-0558-8CrossRefGoogle Scholar
  515. 515.
    Tharaud C, Ribet AM, Costes C, Gaillardin C (1992) Secretion of human blood coagulation factor XIIIa by the yeast Yarrowia lipolytica. Gene 121:111–119CrossRefPubMedGoogle Scholar
  516. 516.
    Gasmi N, Fudalej F, Kallel H, Nicaud J-M (2011) A molecular approach to optimize hIFN alpha2b expression and secretion in Yarrowia lipolytica. Appl Microbiol Biotechnol 89:109–119.  https://doi.org/10.1007/s00253-010-2803-0CrossRefPubMedGoogle Scholar
  517. 517.
    Park CS, Chang CC, Kim JY et al (1997) Expression, secretion, and processing of rice alpha-amylase in the yeast Yarrowia lipolytica. J Biol Chem 272:6876–6881CrossRefPubMedGoogle Scholar
  518. 518.
    Madzak C, Otterbein L, Chamkha M et al (2005) Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5:635–646.  https://doi.org/10.1016/j.femsyr.2004.10.009CrossRefPubMedGoogle Scholar
  519. 519.
    Jolivalt C, Madzak C, Brault A et al (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456.  https://doi.org/10.1007/s00253-004-1717-0CrossRefPubMedGoogle Scholar
  520. 520.
    Park CS, Chang CC, Ryu DD (2000) Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol 87:1–15CrossRefPubMedGoogle Scholar
  521. 521.
    Roth R, Moodley V, van Zyl P (2009) Heterologous expression and optimized production of an Aspergillus aculeatus endo-1,4-beta-mannanase in Yarrowia lipolytica. Mol Biotechnol 43:112–120.  https://doi.org/10.1007/s12033-009-9187-3CrossRefPubMedGoogle Scholar
  522. 522.
    Yuzbashev TV, Yuzbasheva EY, Vibornaya TV et al (2012) Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability. Protein Expr Purif 82:83–89.  https://doi.org/10.1016/j.pep.2011.11.014CrossRefPubMedGoogle Scholar
  523. 523.
    Kaufer NF, Simanis V, Nurse P (1985) Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 318:78–80CrossRefPubMedGoogle Scholar
  524. 524.
    Matsuzawa T, Tohda H, Takegawa K (2013) Ethanol-inducible gene expression using gld1 (+) promoter in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 97:6835–6843.  https://doi.org/10.1007/s00253-013-4812-2CrossRefPubMedGoogle Scholar
  525. 525.
    Schweingruber ME, Edenharter E, Zurlinden A, Stockmaier KM (1992) Regulation of pho1-encoded acid phosphatase of Schizosaccharomyces pombe by adenine and phosphate. Curr Genet 22:289–292CrossRefPubMedGoogle Scholar
  526. 526.
    Okada H, Sekiya T, Yokoyama K et al (1998) Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl Microbiol Biotechnol 49:301–308CrossRefPubMedGoogle Scholar
  527. 527.
    Okada H, Tada K, Sekiya T et al (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64:555–563PubMedPubMedCentralGoogle Scholar
  528. 528.
    Tokunaga M, Kawamura A, Yonekyu S et al (1993) Secretion of mouse alpha-amylase from fission yeast Schizosaccharomyces pombe: presence of chymostatin-sensitive protease activity in the culture medium. Yeast 9:379–387.  https://doi.org/10.1002/yea.320090408CrossRefPubMedGoogle Scholar
  529. 529.
    Sánchez Y, Moreno S, Rodríguez L (1988) Synthesis of Saccharomyces cerevisiae invertase by Schizosaccharomyces pombe. FEBS Lett 234:95–99.  https://doi.org/10.1016/0014-5793(88)81311-5CrossRefPubMedGoogle Scholar
  530. 530.
    Azam M, Kesarwani M, Natarajan K, Datta A (2001) A secretion signal is present in the Collybia velutipes oxalate decarboxylase gene. Biochem Biophys Res Commun 289:807–812.  https://doi.org/10.1006/bbrc.2001.6049CrossRefPubMedGoogle Scholar
  531. 531.
    Bröker M, Ragg H, Karges HE (1987) Expression of human antithrombin III in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biochim Biophys Acta 908:203–213CrossRefPubMedGoogle Scholar
  532. 532.
    Smerdon GR, Aves SJ, Walton EF (1995) Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene 165:313–318CrossRefPubMedGoogle Scholar
  533. 533.
    Sambamurti K (1997) Expression and secretion of mammalian proteins in Schizosaccharomyces pombe. In: Giga-Hama Y, Kumagai H (eds) Foreign gene expression in fission yeast: Schizosaccharomyces pombe. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 149–158CrossRefGoogle Scholar
  534. 534.
    Kondo K, Kajiwara S, Misawa N (1996) Transformant line of Candida utilis yeast and expression of heterogene therewithGoogle Scholar
  535. 535.
    Chávez FP, Pons T, Delgado JM, Rodríguez L (1998) Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 14:1223–1232.  https://doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1223::AID-YEA301>3.0.CO;2-3CrossRefPubMedGoogle Scholar
  536. 536.
    Ladrière J-M, Delcour J, Vandenhaute J (1993) Sequence of a gene coding for a cytoplasmic alcohol dehydrogenase from Kluyveromyces marxianus ATCC 12424. Biochim Biophys Acta 1173:99–101.  https://doi.org/10.1016/0167-4781(93)90252-9CrossRefPubMedGoogle Scholar
  537. 537.
    Shisa N, Akada R, Hoshida H, et al (2015) Novel promoter and use thereof. US 20150031103 A1Google Scholar
  538. 538.
    Fernandes PA, Sena-Esteves M, Moradas-Ferreira P (1995) Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene family from Kluyveromyces marxianus—polymerase chain reaction-single-strand conformation polymorphism as a tool for the study of multigenic families. Yeast 11:725–733.  https://doi.org/10.1002/yea.320110804CrossRefPubMedGoogle Scholar
  539. 539.
    Zhang G, Lu M, Wang J et al (2017) Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Sci Rep 7:45104.  https://doi.org/10.1038/srep45104CrossRefPubMedPubMedCentralGoogle Scholar
  540. 540.
    Laloux O, Cassart J-P, Delcour J et al (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68.  https://doi.org/10.1016/0014-5793(91)80909-MCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Burcu Gündüz Ergün
    • 1
  • Damla Hüccetoğulları
    • 1
  • Sibel Öztürk
    • 1
  • Eda Çelik
    • 2
    • 3
  • Pınar Çalık
    • 1
    • 4
    Email author
  1. 1.Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Chemical EngineeringHacettepe UniversityAnkaraTurkey
  3. 3.Bioengineering Division, Institute of ScienceHacettepe UniversityAnkaraTurkey
  4. 4.Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations