Advertisement

Mouse Ex Vivo Kidney Culture Methods

  • Anneliis Ihermann-Hella
  • Satu KuureEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1926)

Abstract

Kidney organogenesis has been a widely used classical model system to study inductive tissue interactions that guide differentiation of many organs. The basis for this is in the pioneering work done during the early 1950s when the conditions of how to support ex vivo growth and differentiation of developing kidneys were revealed. Importantly, culturing developing kidneys remains as an essential instrument to advance our understanding of molecular and cellular regulation of morphogenesis even today. Despite the fact that embryonic kidneys have been cultured for decades, it is not a trivial method and requires specific anatomical and developmental biology knowledge. This chapter outlines the general steps in organ culture and details the requirements for successful kidney explant differentiation.

Key words

Ex vivo Organ culture Kidney development In vitro differentiation Ureteric bud Metanephric mesenchyme Microdissection 

References

  1. 1.
    Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Costantini F (2012) Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip Rev Dev Biol 1:693–713CrossRefGoogle Scholar
  3. 3.
    O'Brien LL, McMahon AP (2014) Induction and patterning of the metanephric nephron. Semin Cell Dev Biol 36:31–38CrossRefGoogle Scholar
  4. 4.
    Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608CrossRefGoogle Scholar
  5. 5.
    Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA et al (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29:188–202CrossRefGoogle Scholar
  6. 6.
    Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135:609–620CrossRefGoogle Scholar
  7. 7.
    Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802CrossRefGoogle Scholar
  8. 8.
    Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118:52–55CrossRefGoogle Scholar
  9. 9.
    Motamedi FJ, Badro DA, Clarkson M, Lecca MR, Bradford ST, Buske FA, Saar K, Hubner N, Brandli AW, Schedl A (2014) WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat Commun 5:4444CrossRefGoogle Scholar
  10. 10.
    Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peranen J, Charron J, Saarma M, Costantini F, Kuure S (2014) Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet 10:e1004193CrossRefGoogle Scholar
  11. 11.
    Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F (2016) Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol 14:e1002382CrossRefGoogle Scholar
  12. 12.
    Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J, Cereghini S, Ronkainen VP, Heikkila J, Skovorodkin I, Vainio SJ (2017) Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 144:1113–1117CrossRefGoogle Scholar
  13. 13.
    Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, Murtoniemi M, Schneider P, Schmidt-Ullrich R, Mikkola ML (2012) Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-kappaB. Proc Natl Acad Sci U S A 109:5744–5749CrossRefGoogle Scholar
  14. 14.
    Speroni L, Voutilainen M, Mikkola ML, Klager SA, Schaeberle CM, Sonnenschein C, Soto AM (2017) New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Sci Rep 7:40806CrossRefGoogle Scholar
  15. 15.
    Burke ZD, Li WC, Slack JM, Tosh D (2010) Isolation and culture of embryonic pancreas and liver. Methods Mol Biol 633:91–99CrossRefGoogle Scholar
  16. 16.
    Shih HP, Sander M (2014) Pancreas development ex vivo: culturing embryonic pancreas explants on permeable culture inserts, with fibronectin-coated glass microwells, or embedded in three-dimensional matrigel. Methods Mol Biol 1210:229–237CrossRefGoogle Scholar
  17. 17.
    Trowell OA (1954) A modified technique for organ culture in vitro. Exp Cell Res 6:246–248CrossRefGoogle Scholar
  18. 18.
    Saxen L, Lehtonen E (1987) Embryonic kidney in organ culture. Differentiation 36:2–11CrossRefGoogle Scholar
  19. 19.
    Sebinger DD, Unbekandt M, Ganeva VV, Ofenbauer A, Werner C, Davies JA (2010) A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PLoS One 5:e10550CrossRefGoogle Scholar
  20. 20.
    Aresh B, Peuckert C (2017) Dissection and culture of mouse embryonic kidney. J Vis Exp (123):55715Google Scholar
  21. 21.
    Nie X, Xu J, El-Hashash A, Xu PX (2011) Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 352:141–151CrossRefGoogle Scholar
  22. 22.
    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185CrossRefGoogle Scholar
  23. 23.
    Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, Kvist J, Vainio S, Sariola H (2005) Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev 122:765–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GM-unit at Helsinki Institute of Life Science and MedicumUniversity of HelsinkiHelsinkiFinland
  2. 2.GM-unit at Helsinki Institute of Life Science and Medicum, Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations