Advertisement

Generating Genetic Mosaic Mouse Embryos or Organoids for Studies of Kidney Development

  • Frank CostantiniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1926)

Abstract

For studies of gene function during development, it can be very useful to generate mosaic embryos in which a small subset of cells in a given cell lineage lacks a gene of interest and carries a marker that allows the mutant cells to be specifically visualized and compared to wild-type cells. Several methods have been used to generate genetically mosaic mouse kidneys for such studies. These include (1) chimeric embryos generated using embryonic stem cells, (2) chimeric renal organoids generated by dissociation and reaggregation of the fetal kidneys, (3) generation of a knockout allele with a built-in reporter gene, (4) mosaic analysis with double markers (MADM), and (5) mosaic mutant analysis with spatial and temporal control of recombination (MASTR). In this chapter, these five methods are described, and their advantages and disadvantages are discussed.

Key words

Mosaic Chimera MADM MASTR Knockout Conditional knockout Organoid Cre recombinase FLP recombinase 

Notes

Acknowledgments

Research in the author’s laboratory has been supported by grants 2R01DK083289 and 5R01DK075578 from the NIH. I thank Dr. Shifaan Thowfeequ for helpful comments on the manuscript.

References

  1. 1.
    Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223(1):77–90CrossRefGoogle Scholar
  2. 2.
    Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122(6):1919–1929PubMedGoogle Scholar
  3. 3.
    Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92(15):6991–6995CrossRefGoogle Scholar
  4. 4.
    Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132(12):2809–2823CrossRefGoogle Scholar
  5. 5.
    McLaren A (1976) Mammalian chimaeras. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Hogan B, Bedington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  7. 7.
    Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8(1):65–74CrossRefGoogle Scholar
  8. 8.
    Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, Mendelsohn C, Costantini F (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17(2):199–209CrossRefGoogle Scholar
  9. 9.
    Robertson EJ (ed) (1987) Teratocarcinomas and embryonic stem cells: a practical approach, Practical approach series. IRL Press, OxfordGoogle Scholar
  10. 10.
    Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956–1968. https://doi.org/10.1038/nprot.2014.134CrossRefPubMedGoogle Scholar
  11. 11.
    Costantini F, Watanabe T, Lu B, Chi X, Srinivas S (2011) Imaging kidney development. Cold Spring Harb Protoc 2011(5):468–474. https://doi.org/10.1101/pdb.top109. pii: pdb.top109CrossRefGoogle Scholar
  12. 12.
    Lusis M, Li J, Ineson J, Christensen ME, Rice A, Little MH (2010) Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res 5(1):23–39. https://doi.org/10.1016/j.scr.2010.03.003, pii: S1873-5061(10)00019-XCrossRefPubMedGoogle Scholar
  13. 13.
    Unbekandt M, Davies JA (2010) Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int 77(5):407–416. https://doi.org/10.1038/ki.2009.482, pii: ki2009482CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ganeva V, Unbekandt M, Davies JA (2011) An improved kidney dissociation and re-aggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis 7(2):83–87. https://doi.org/10.4161/org.7.2.14881CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G (2012) In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 23(11):1857–1868. https://doi.org/10.1681/ASN.2012050505, pii: ASN.2012050505CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leclerc K, Costantini F (2016) Mosaic analysis of cell rearrangements during ureteric bud branching in dissociated/reaggregated kidney cultures and in vivo. Dev Dyn 245(4):483–496. https://doi.org/10.1002/dvdy.24387CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davies JA, Unbekandt M, Ineson J, Lusis M, Little MH (2012) Dissociation of embryonic kidney followed by re-aggregation as a method for chimeric analysis. Methods Mol Biol 886:135–146. https://doi.org/10.1007/978-1-61779-851-1_12CrossRefPubMedGoogle Scholar
  18. 18.
    Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H (2007) Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 134(11):2171–2181. https://doi.org/10.1242/dev.001388CrossRefPubMedGoogle Scholar
  19. 19.
    Keefe Davis T, Hoshi M, Jain S (2013) Stage specific requirement of Gfralpha1 in the ureteric epithelium during kidney development. Mech Dev 130(9–10):506–518. https://doi.org/10.1016/j.mod.2013.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890CrossRefGoogle Scholar
  21. 21.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71CrossRefGoogle Scholar
  22. 22.
    Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492CrossRefGoogle Scholar
  23. 23.
    Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS One 7(3):e33332. https://doi.org/10.1371/journal.pone.0033332, pii: PONE-D-11-22207CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hippenmeyer S, Johnson RL, Luo L (2013) Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep 3(3):960–967. https://doi.org/10.1016/j.celrep.2013.02.002, pii: S2211-1247(13)00061-2CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709. https://doi.org/10.1016/j.neuron.2010.09.027, pii: S0896-6273(10)00769-5CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F (2016) Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol (in press)Google Scholar
  27. 27.
    Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276(2):403–415CrossRefGoogle Scholar
  28. 28.
    Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41(12):1295–1302. https://doi.org/10.1038/ng.476, pii: ng.476CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1(1):4CrossRefGoogle Scholar
  30. 30.
    Lao Z, Raju GP, Bai CB, Joyner AL (2012) MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep 2(2):386–396. https://doi.org/10.1016/j.celrep.2012.07.004, pii: S2211-1247(12)00200-8CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140CrossRefGoogle Scholar
  32. 32.
    Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129(22):5301–5312PubMedGoogle Scholar
  33. 33.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Davies JA (2006) A method for cold storage and transport of viable embryonic kidney rudiments. Kidney Int 70(11):2031–2034CrossRefGoogle Scholar
  37. 37.
    Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91(20):9302–9306CrossRefGoogle Scholar
  38. 38.
    Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Genetics and Development, 1418 Hammer Health Sciences CenterColumbia UniversityNew YorkUSA

Personalised recommendations