In Vivo Monitoring of Ca2+ Uptake into Subcellular Compartments of Mouse Skeletal Muscle

  • Rüdiger RudolfEmail author
  • Sofie Trajanovska
  • David Grant Allen
  • Tullio Pozzan
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


Ca2+ regulates many functions of skeletal muscle, including excitation-contraction coupling, energy homeostasis, and fiber-type-specific gene expression. However, microscopic observation of Ca2+ signalling in live skeletal muscle tissue has been hampered, in particular, by the combination of the high speed of Ca2+ transients and the contractile properties that are inherent to muscle. The present chapter describes methods to visualize Ca2+ signals during relaxation-contraction cycles in different subcellular compartments at high spatiotemporal resolution or at the global muscle level in combination with simultaneous measurements of muscle force. These protocols employ transfection of genetically encoded ratiometric Ca2+ sensors and two-photon microscopy as well as force transducers and associated hardware for data acquisition. Information on how to determine subcellular localization of the genetically encoded Ca2+ sensors and on how to calibrate the ratiometric data in a semiquantitative manner is given in the final paragraphs.

Key words

Cameleon Force transducer FRET Mitochondria Myoplasm Ratiometric measurement Sarcoplasmic reticulum Two-photon microscopy 


  1. 1.
    Allen DG, Clugston E, Petersen Y, Röder IV, Chapman B, Rudolf R (2011) Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. J Appl Physiol 111:358–366. CrossRefPubMedGoogle Scholar
  2. 2.
    Calderón JC, Bolaños P, Caputo C (2014) The excitation–contraction coupling mechanism in skeletal muscle. Biophys Rev 6:133–160. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tsugorka A, Ríos E, Blatter LA (1995) Imaging elementary events of calcium release in skeletal muscle cells. Science 269:1723–1726CrossRefGoogle Scholar
  4. 4.
    Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530CrossRefGoogle Scholar
  5. 5.
    Weisleder N, Ma J (2008) Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Res Rev 7:177–188. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24:564–569. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rudolf R, Mongillo M, Magalhães PJ, Pozzan T (2004) In vivo monitoring of Ca 2 + uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brulet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974CrossRefGoogle Scholar
  9. 9.
    Pozzan T, Rudolf R (2009) Measurements of mitochondrial calcium in vivo. Biochim Biophys Acta 1787:1317–1323. CrossRefPubMedGoogle Scholar
  10. 10.
    Rossi AE, Boncompagni S, Dirksen RT (2009) Sarcoplasmic reticulum-mitochondrial symbiosis. Exerc Sport Sci Rev 37:29–35. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408CrossRefGoogle Scholar
  12. 12.
    Rudolf R, Magalhães PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173:187–193. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eshima H, Poole DC, Kano Y (2015) In vivo Ca 2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects. Am J Physiol Regul Integr Comp Physiol 309:R128–R137. CrossRefPubMedGoogle Scholar
  14. 14.
    Eshima H, Miura S, Senoo N, Hatakeyama K, Poole DC, Kano Y (2017) Improved skeletal muscle Ca 2+ regulation in vivo following contractions in mice overexpressing PGC-1α. Am J Physiol Regul Integr Comp Physiol 312:R1017–R1028. CrossRefPubMedGoogle Scholar
  15. 15.
    Navas-Navarro P, Rojo-Ruiz J, Rodriguez-Prados M, Ganfornina MD, Looger LL, Alonso MT, García-Sancho J (2016) GFP-aequorin protein sensor for ex vivo and in vivo imaging of Ca2+ dynamics in high-Ca2+ organelles. Cell Chem Biol 23:738–745. CrossRefPubMedGoogle Scholar
  16. 16.
    Rudolf R, Hafner M, Mongillo M (2012) Investigating second messenger signaling in vivo. Methods Enzymol 505:363–382. CrossRefPubMedGoogle Scholar
  17. 17.
    Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rüdiger Rudolf
    • 1
    • 2
    • 3
    Email author
  • Sofie Trajanovska
    • 4
  • David Grant Allen
    • 4
  • Tullio Pozzan
    • 5
    • 6
  1. 1.Institute of Molecular and Cell Biology, Mannheim University of Applied SciencesMannheimGermany
  2. 2.Institute of Toxicology and Genetics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Interdisciplinary Center for Neurosciences, Heidelberg UniversityHeidelbergGermany
  4. 4.School of Medical Sciences and Bosch Institute, School of Molecular Bioscience, University of SydneySydneyAustralia
  5. 5.Neuroscience InstituteItalian National Research Council (CNR)PaduaItaly
  6. 6.Department of Biomedical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations