Imaging Intracellular Ca2+ in Cardiomyocytes with Genetically Encoded Fluorescent Probes

  • Antonio Campo
  • Marco MongilloEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1925)


Calcium (Ca2+) is a key player in cardiomyocyte homeostasis, and its roles span from excitation-contraction coupling to metabolic and structural signaling. Alterations in the function or expression of Ca2+-handling proteins are common findings in failing cardiomyocytes, which have been linked to impaired contractility and detrimental remodeling of the cellular structure. For these reasons, the study of intracellular Ca2+ handling in cardiomyocytes represents a central method in experimental molecular cardiology.

Key words

Calcium probes Cardiomyocyte Calcium transients Excitation-contraction coupling Calcium-induced calcium release 



The authors are grateful to Dr. Giulia Borile for her theoretical and technical help to develop and improve this protocol.


  1. 1.
    Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–14. CrossRefGoogle Scholar
  2. 2.
    Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1365. CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744. CrossRefPubMedGoogle Scholar
  4. 4.
    Lehnart SE, Terrenoire C, Reiken S, Wehrens XHT, Song LS, Tillman EJ, Mancarella S, Coromilas J, Lederer WJ, Kass RS, Marks AR (2006) Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proc Natl Acad Sci U S A 103:7906–7910. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D'Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840. CrossRefPubMedGoogle Scholar
  6. 6.
    Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H, Marks AR (2004) Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109:3208–3214. CrossRefPubMedGoogle Scholar
  7. 7.
    Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci U S A 110:10479–10486. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mattiazzi A, Kranias EG (2014) The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 5:5. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Egger M, Niggli E (1999) Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 168:107–130. CrossRefPubMedGoogle Scholar
  10. 10.
    De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Innvoation: looking forward to seeing calcium. Nat Rev Mol Cell Biol 4(7):579–586. CrossRefPubMedGoogle Scholar
  13. 13.
    Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N (2016) Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 148(4):341–355. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pahlavan S, Morad M (2017) Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca(2+) probes in rat ventricular myocytes. Cell Calcium 66:98–110. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kotlikoff MI (2007) Genetically encoded Ca2+indicators: using genetics and molecular design to understand complex physiology. J Physiol 578(1):55–67. CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, Song S, Xiong W, Liu X (2018) Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 9(1):1504. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96(5):2135–2140. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46(3):152–159. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Perez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: Properties and evaluation. Biochim Biophys Acta 1833(7):1787–1797. CrossRefPubMedGoogle Scholar
  20. 20.
    Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530. CrossRefGoogle Scholar
  21. 21.
    Eisner DA (2018) Ups and downs of calcium in the heart. J Physiol 596(1):19–30. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of PaduaPaduaItaly
  2. 2.Venetian Institute of Molecular MedicinePaduaItaly
  3. 3.Neuroscience Institute, Italian National Research Council (CNR)PaduaItaly

Personalised recommendations