Phototropism pp 143-156 | Cite as

New-Generation Chemical Tools for the Manipulation of Auxin Biosynthesis, Action, and Transport

  • Kosuke Fukui
  • Ken-ichiro HayashiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1924)


Auxin is the master regulator for almost every aspect of plant growth and development. Small molecule inhibitors, fluorescently labeled molecule, and hormone analogs on auxin biosynthesis, transport, and signaling, so-called auxin chemical tools, have been widely utilized to dissect physiological functions of gene families in auxin biosynthesis, transport, and signaling. Auxin chemical tools can manipulate specific auxin-regulated events at any developmental stage. Chemical tools can modulate the function of orthologs of target proteins and also can overcome the redundant function of large family gene controlling auxin-regulated response. On the other hand, chemical tool might induce the off-target effects at high concentration, if the chemical tool shows insufficient specificity on target proteins. This chapter describes a brief overview and practical application of the auxin chemical tools.

Key words

Auxin Auxin biosynthesis Auxin signaling Auxin transport Chemical biology Inhibitor 


  1. 1.
    Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735CrossRefGoogle Scholar
  2. 2.
    Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338CrossRefGoogle Scholar
  3. 3.
    Kasahara H (2015) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80:34–42CrossRefGoogle Scholar
  4. 4.
    Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773CrossRefGoogle Scholar
  5. 5.
    Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32CrossRefGoogle Scholar
  6. 6.
    Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19CrossRefGoogle Scholar
  7. 7.
    Hayashi K (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975CrossRefGoogle Scholar
  8. 8.
    Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191CrossRefGoogle Scholar
  9. 9.
    Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176CrossRefGoogle Scholar
  10. 10.
    Zazimalova E, Murphy AS, Yang H, Hoyerova K, Hosek P (2010) Auxin transporters – why so many? Cold Spring Harb Perspect Biol 2:a001552CrossRefGoogle Scholar
  11. 11.
    Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235CrossRefGoogle Scholar
  12. 12.
    Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107CrossRefGoogle Scholar
  13. 13.
    Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127CrossRefGoogle Scholar
  14. 14.
    Yang H, Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59:179–191CrossRefGoogle Scholar
  15. 15.
    Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285CrossRefGoogle Scholar
  16. 16.
    Finet C, Jaillais Y (2012) Auxology: when auxin meets plant evo-devo. Dev Biol 369:19–31CrossRefGoogle Scholar
  17. 17.
    Ma Q, Robert S (2014) Auxin biology revealed by small molecules. Physiol Plant 151:25–42CrossRefGoogle Scholar
  18. 18.
    Hicks GR, Raikhel NV (2009) Opportunities and challenges in plant chemical biology. Nat Chem Biol 5:268–272CrossRefGoogle Scholar
  19. 19.
    Hicks GR, Raikhel NV (2014) Plant chemical biology: are we meeting the promise? Front Plant Sci 5:455CrossRefGoogle Scholar
  20. 20.
    Narukawa-Nara M, Nakamura A, Kikuzato K, Kakei Y, Sato A, Mitani Y, Yamasaki-Kokudo Y, Ishii T, Hayashi K, Asami T, Ogura T, Yoshida S, Fujioka S, Kamakura T, Kawatsu T, Tachikawa M, Soeno K, Shimada Y (2016) Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting L-tryptophan aminotransferase: structure-activity relationships. Plant J 87:245–257CrossRefGoogle Scholar
  21. 21.
    He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960CrossRefGoogle Scholar
  22. 22.
    Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA a key enzyme in auxin biosynthesis. Plant J 77:352–366CrossRefGoogle Scholar
  23. 23.
    Tsugafune S, Mashiguchi K, Fukui K, Takebayashi Y, Nishimura T, Sakai T, Shimada Y, Kasahara H, Koshiba T, Hayashi K (2017) Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Sci Rep 7:13992Google Scholar
  24. 24.
    Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, Kokudo Y, Ishii T, Soeno K, Shimada Y (2015) Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J 84:827–837CrossRefGoogle Scholar
  25. 25.
    Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757CrossRefGoogle Scholar
  26. 26.
    Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451CrossRefGoogle Scholar
  27. 27.
    Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179CrossRefGoogle Scholar
  28. 28.
    Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23309–23317CrossRefGoogle Scholar
  29. 29.
    Nishimura T, Matano N, Morishima T, Kakinuma C, Hayashi K, Komano T, Kubo M, Hasebe M, Kasahara H, Kamiya Y, Koshiba T (2012) Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems. Plant Cell Physiol 53:1671–1682CrossRefGoogle Scholar
  30. 30.
    Tsuda E, Yang H, Nishimura T, Uehara Y, Sakai T, Furutani M, Koshiba T, Hirose M, Nozaki H, Murphy AS, Hayashi K (2011) Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J Biol Chem 286:2354–2364CrossRefGoogle Scholar
  31. 31.
    Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406CrossRefGoogle Scholar
  32. 32.
    Suzuki H, Matano N, Nishimura T, Koshiba T (2014) A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana. Plant Signal Behav 9:e29077CrossRefGoogle Scholar
  33. 33.
    Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147CrossRefGoogle Scholar
  34. 34.
    Sungur C, Miller S, Bergholz J, Hoye RC, Brisbois RG, Overvoorde P (2007) The small molecule 2-furylacrylic acid inhibits auxin-mediated responses in Arabidopsis thaliana. Plant Cell Physiol 48:1693–1701CrossRefGoogle Scholar
  35. 35.
    Hayashi K, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, Kondo H, Nozaki H (2003) Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J Biol Chem 278:23797–23806CrossRefGoogle Scholar
  36. 36.
    Yamazoe A, Hayashi K, Kepinski S, Leyser O, Nozaki H (2005) Characterization of terfestatin A, a new specific inhibitor for auxin signaling. Plant Physiol 139:779–789CrossRefGoogle Scholar
  37. 37.
    Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H (2012) Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem Biol 7:590–598CrossRefGoogle Scholar
  38. 38.
    Hayashi K, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 111:11557–11562CrossRefGoogle Scholar
  39. 39.
    Mravec J, Kracun SK, Zemlyanskaya E, Rydahl MG, Guo X, Picmanova M, Sorensen KK, Ruzicka K, Willats WGT (2017) Click chemistry-based tracking reveals putative cell wall-located auxin binding sites in expanding cells. Sci Rep 7:15988CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryOkayama University of ScienceOkayamaJapan

Personalised recommendations