Advertisement

Odontogenesis pp 453-492 | Cite as

Protocols for Genetic and Epigenetic Studies of Rare Diseases Affecting Dental Tissues

  • Bruna Rabelo Amorim
  • Pollyanna Almeida Costa dos Santos
  • Caroline Lourenço de Lima
  • Denise Carleto Andia
  • Juliana Forte Mazzeu
  • Ana Carolina Acevedo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1922)

Abstract

This chapter describes methods related to the diagnosis of genetic dental diseases. Based on the present knowledge, clinical phenotyping and next-generation sequencing techniques are discussed. Methods necessary for Sanger sequencing, multiplex ligation-dependent probe amplification, and epigenetic modification methods are detailed. In addition, protocols for cell culture establishment and characterization from patients with inherited dental anomalies are described.

Key words

Amelogenesis imperfecta Tooth agenesis Dentin inherited disorders Next-generation sequencing Epigenetics Cell culture 

References

  1. 1.
    Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(9):1647–1648PubMedGoogle Scholar
  2. 2.
    Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspect Biol 4(4):a008425Google Scholar
  3. 3.
    Brook A (2009) Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 54:S3–S17PubMedPubMedCentralGoogle Scholar
  4. 4.
    Townsend G, Bockmann M, Hughes T et al (2012) Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology 100(1):1–9PubMedGoogle Scholar
  5. 5.
    Wang J, Sun K, Shen Y et al (2016) DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Sci Rep 6:19162PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bailleul-Forestier I, Berdal A, Vinckier F et al (2008) The genetic basis of inherited anomalies of the teeth. Part 2: syndromes with significant dental involvement. Eur J Med Genet 51(5):383–408PubMedGoogle Scholar
  7. 7.
    Cobourne MT, Sharpe PT (2013) Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. Wiley Interdiscip Rev Dev Biol 2(2):183–212PubMedGoogle Scholar
  8. 8.
    Vastardis H, Karimbux N, Guthua SW et al (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13(4):417–421PubMedGoogle Scholar
  9. 9.
    Prasad MK, Geoffroy V, Vicaire S et al (2016) A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet 53(2):98–110PubMedGoogle Scholar
  10. 10.
    Vastardis H (2000) The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofac Orthop 117(6):650–656Google Scholar
  11. 11.
    Pagnan NAB, Visinoni ÁF (2014) Update on ectodermal dysplasias clinical classification. Am J Med Genet A 164(10):2415–2423Google Scholar
  12. 12.
    Ye X, Attaie AB (2016) Genetic basis of nonsyndromic and syndromic tooth agenesis. J Pediatr Genet 5(4):198–208PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sarkar T, Bansal R, Das P (2014) Whole genome sequencing reveals novel non-synonymous mutation in ectodysplasin a (EDA) associated with non-syndromic X-linked dominant congenital tooth agenesis. PLoS One 9(9):e106811PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lammi L, Arte S, Somer M et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74(5):1043–1050PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bergendal B, Klar J, Stecksén-Blicks C et al (2011) Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A 155(7):1616–1622Google Scholar
  16. 16.
    Arte S, Parmanen S, Pirinen S et al (2013) Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One 8(8):e73705PubMedPubMedCentralGoogle Scholar
  17. 17.
    Crawford PJ, Aldred M, Bloch-Zupan A (2007) Amelogenesis imperfecta. Orphanet J Rare Dis 2(1):17PubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith CE, Murillo G, Brookes SJ et al (2016) Deletion of amelotin exons 3–6 is associated with amelogenesis imperfecta. Hum Mol Genet 25(16):3578–3587PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sillence D, Senn A, Danks D (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16(2):101–116PubMedPubMedCentralGoogle Scholar
  20. 20.
    Goldblatt J, Carman P, Sprague P (1991) Unique dwarfing, spondylometaphyseal skeletal dysplasia, with joint laxity and dentinogenesis imperfecta. Am J Med Genet 39(2):170–172PubMedGoogle Scholar
  21. 21.
    Unger S, Antoniazzi F, Brugnara M et al (2008) Clinical and radiographic delineation of odontochondrodysplasia. Am J Med Genet A 146(6):770–778Google Scholar
  22. 22.
    Shields E, Bixler D, El-Kafrawy A (1973) A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol 18(4):543–553, IN7PubMedGoogle Scholar
  23. 23.
    MacDougall M, Dong J, Acevedo AC (2006) Molecular basis of human dentin diseases. Am J Med Genet A 140(23):2536–2546PubMedGoogle Scholar
  24. 24.
    de La Dure-Molla M, Fournier BP, Berdal A (2015) Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification. Eur J Hum Genet 23(4):445–451PubMedGoogle Scholar
  25. 25.
    MacDougall M, Simmons D, Luan X et al (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4 Dentin phosphoprotein DNA sequence determination. J Biol Chem 272(2):835–842PubMedGoogle Scholar
  26. 26.
    Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(1):33–40PubMedGoogle Scholar
  27. 27.
    Yamakoshi Y, Hu JC-C, Fukae M et al (2005) Dentin glycoprotein the protein in the middle of the dentin sialophosphoprotein chimera. J Biol Chem 280(17):17472–17479PubMedGoogle Scholar
  28. 28.
    Yang Q, Chen D, Xiong F et al (2016) A splicing mutation in VPS4B causes dentin dysplasia I. J Med Genet 53(9):624–633PubMedGoogle Scholar
  29. 29.
    Xiong F, Ji Z, Liu Y et al (2017) Mutation in SSUH2 causes autosomal-dominant dentin dysplasia type I. Hum Mutat 38(1):95–104PubMedGoogle Scholar
  30. 30.
    Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74(2):560–564PubMedGoogle Scholar
  31. 31.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedGoogle Scholar
  33. 33.
    Smith M (2017) DNA sequence analysis in clinical medicine, proceeding cautiously. Front Mol Biosci 4:24PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kircher M, Kelso J (2010) High-throughput DNA sequencing—concepts and limitations. BioEssays 32(6):524–536PubMedGoogle Scholar
  35. 35.
    Koboldt DC, Larson DE, Chen K et al (2012) Massively parallel sequencing approaches for characterization of structural variation. Methods Mol Biol 838:369–384PubMedPubMedCentralGoogle Scholar
  36. 36.
    Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. N Engl J Med 370(25):2418–2425PubMedGoogle Scholar
  37. 37.
    Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57–e57PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schwartz M, Dunø M (2004) Improved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method. Genet Test 8(4):361–367PubMedGoogle Scholar
  39. 39.
    Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinformatics 13(5):278–289Google Scholar
  40. 40.
    O’Sullivan J, Bitu CC, Daly SB et al (2011) Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet 88(5):616–620PubMedPubMedCentralGoogle Scholar
  41. 41.
    Poulter JA, Brookes SJ, Shore RC et al (2014) A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum Mol Genet 23(8):2189–2197PubMedGoogle Scholar
  42. 42.
    Poulter JA, El-Sayed W, Shore RC et al (2014) Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur J Hum Genet 22(1):132–135PubMedGoogle Scholar
  43. 43.
    Acevedo AC, Poulter JA, Alves PG et al (2015) Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med Genet 16(1):8PubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang J, Kawasaki K, Lee M et al (2016) The dentin phosphoprotein repeat region and inherited defects of dentin. Mol Genet Genomic Med 4(1):28–38PubMedGoogle Scholar
  45. 45.
    Aidar M, Line SRP (2007) A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz Dent J 18(2):148–152PubMedGoogle Scholar
  46. 46.
    Lahiri DK, Nurnberger JI Jr (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucl Acids Res 19(19):5444PubMedGoogle Scholar
  47. 47.
    Thiede C, Prange-Krex G, Freiberg-Richter J et al (2000) Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplantation 25(5):575PubMedGoogle Scholar
  48. 48.
    Abraham JE, Maranian MJ, Spiteri I et al (2012) Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genomics 5(1):19PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ishmael FT, Stellato C (2008) Principles and applications of polymerase chain reaction: basic science for the practicing physician. Ann Allergy Asthma Immunol 101(4):437–443PubMedGoogle Scholar
  50. 50.
    Kolmodin LA, Birch DE (2002) Polymerase chain reaction. Basic principles and routine practice. Methods Mol Biol 192:3–18PubMedGoogle Scholar
  51. 51.
    Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40(15):e115PubMedGoogle Scholar
  52. 52.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291PubMedGoogle Scholar
  53. 53.
    Landre P, Gelfand D, Watson R (1995) The use of cosolvents to enhance amplification by the polymerase chain reaction. In: PCR strategies. Academic, New York, pp 316Google Scholar
  54. 54.
    Tang M, Xu W, Wang Q et al (2009) Potential of DNMT and its epigenetic regulation for lung cancer therapy. Curr Genomics 10(5):336–352PubMedPubMedCentralGoogle Scholar
  55. 55.
    Stewart SK, Morris TJ, Guilhamon P et al (2015) oxBS-450K: a method for analysing hydroxymethylation using 450K BeadChips. Methods 72:9–15PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gross JA, Lefebvre F, Lutz P-E et al (2016) Variations in 5-methylcytosine and 5-hydroxymethylcytosine among human brain, blood, and saliva using oxBS and the Infinium MethylationEPIC array. Biol Methods Protocols 1(1):bpw002Google Scholar
  57. 57.
    Field SF, Beraldi D, Bachman M et al (2015) Accurate measurement of 5-methylcytosine and 5-hydroxymethylcytosine in human cerebellum DNA by oxidative bisulfite on an array (OxBS-array). PLoS One 10(2):e0118202PubMedPubMedCentralGoogle Scholar
  58. 58.
    Skvortsova K, Zotenko E, Luu P-L et al (2017) Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenet Chromatin 10(1):16Google Scholar
  59. 59.
    Pastor WA, Pape UJ, Huang Y et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397PubMedPubMedCentralGoogle Scholar
  60. 60.
    Taiwo O, Wilson GA, Morris T et al (2012) Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 7(4):617–636PubMedGoogle Scholar
  61. 61.
    Nestor CE, Meehan RR (2014) Hydroxymethylated DNA immunoprecipitation (hmeDIP). Func Anal DNA Chromatin 1094:259–267Google Scholar
  62. 62.
    Buenrostro JD, Wu B, Chang HY et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.21–21.29.29Google Scholar
  63. 63.
    Chen S, Santos L, Wu Y et al (2005) Altered gene expression in human cleidocranial dysplasia dental pulp cells. Arch Oral Biol 50(2):227–236PubMedGoogle Scholar
  64. 64.
    Yan W, Zhang C, Yang X et al (2015) Abnormal differentiation of dental pulp cells in cleidocranial dysplasia. J Dent Res 94(4):577–583PubMedGoogle Scholar
  65. 65.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63PubMedGoogle Scholar
  66. 66.
    Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bruna Rabelo Amorim
    • 1
  • Pollyanna Almeida Costa dos Santos
    • 1
    • 5
  • Caroline Lourenço de Lima
    • 1
    • 2
  • Denise Carleto Andia
    • 3
  • Juliana Forte Mazzeu
    • 4
  • Ana Carolina Acevedo
    • 1
  1. 1.Oral Histopathology Laboratory, Department of Dentistry, Health Sciences FacultyUniversity of Brasília (UnB)BrasíliaBrazil
  2. 2.Molecular Pharmacology Laboratory, Department of Pharmaceutics Science, Health Sciences FacultyUniversity of Brasília (UnB)BrasíliaBrazil
  3. 3.Department of Epigenetics, Dental Research Division, Health Science InstitutePaulista University (UNIP)São PauloBrazil
  4. 4.Laboratory of Medical Genetics, Faculty of MedicineUniversity of Brasília (UnB)BrasíliaBrazil
  5. 5.Universidade Estadual de Ciências da Saúde de AlagoasMaceioBrazil

Personalised recommendations