Odontogenesis pp 267-291 | Cite as

Using ImageJ (Fiji) to Analyze and Present X-Ray CT Images of Enamel

  • Steven J. BrookesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1922)


X-ray micro CT has become a popular methodology for the nondestructive analysis of dental tissues and has been used extensively in the amelogenesis field. The aim of this chapter is to introduce ImageJ/Fiji to researchers new to CT scanning and the analysis of CT image data. The program can be applied to analyzing X-ray CT images of enamel but can be extrapolated to other tissues as well.

Key words

X-ray micro CT Dental tissues Enamel ImageJ/FIJI 

Supplementary material

Macro demo (mp4 6,095 KB)

431026_1_En_26_MOESM2_ESM.txt (1 kb)
Macro (TXT 2 kb)


  1. 1.
    Brookes SJ, Barron MJ, Boot-Handford R, Kirkham J, Dixon MJ (2014) Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate. Hum Mol Genet 23:2468–2480CrossRefGoogle Scholar
  2. 2.
    Brookes SJ, Barron MJ, Smith CEL, Poulter JA, Mighell AJ, Inglehearn CF, Brown CJ, Rodd H, Kirkham J, Dixon MJ (2017) Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress. Hum Mol Genet 26:1863–1876CrossRefGoogle Scholar
  3. 3.
    Cao Z, Jiang B, Xie Y, Liu CJ, Feng JQ (2010) GEP, a local growth factor, is critical for odontogenesis and amelogenesis. Int J Biol Sci 6:719–729CrossRefGoogle Scholar
  4. 4.
    Feng J, Yang G, Yuan G, Gluhak-Heinrich J, Yang W, Wang L, Chen Z, Schulze McDaniel J, Donly KJ, Harris SE, MacDougall M, Chen S (2011) Abnormalities in the enamel in bmp2-deficient mice. Cells Tissues Organs 194:216–221CrossRefGoogle Scholar
  5. 5.
    Pugach MK, Gibson CW (2014) Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 5:313CrossRefGoogle Scholar
  6. 6.
    Schmitz JE, Teepe JD, Hu Y, Smith CE, Fajardo RJ, Chun YH (2014) Estimating mineral changes in enamel formation by ashing/BSE and microCT. J Dent Res 93:256–262CrossRefGoogle Scholar
  7. 7.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  8. 8.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  9. 9.
    Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426CrossRefGoogle Scholar
  10. 10.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11:10–18CrossRefGoogle Scholar
  11. 11.
    Smith CE, Murillo G, Brookes SJ, Poulter JA, Silva S, Kirkham J, Inglehearn CF, Mighell AJ (2016) Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum Mol Genet 25:3578–3587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Oral Biology, School of DentistryUniversity of LeedsLeedsUK

Personalised recommendations