Advertisement

RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq)

  • Karoline Holler
  • Jan Philipp JunkerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)

Abstract

Embryonic development is heavily dependent on temporally and spatially restricted gene expression. Spatially resolved measurements of gene expression are therefore crucial for identifying novel regulators and the understanding of their function. However, in situ methods do not resolve global gene expression, and sequencing-based methods usually do not provide spatial information. Here, we describe tomo-seq, a method that combines classical histological sectioning of embryos or tissues with a highly sensitive RNA-sequencing technique. Application of tomo-seq to zebrafish embryos allows reconstructing the spatial gene expression of thousands of genes.

Key words

mRNA sequencing Local gene expression Spatial transcriptomics Developmental patterning Gene expression mapping Morphogen gradients 

References

  1. 1.
    Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69.  https://doi.org/10.1038/nprot.2007.514CrossRefPubMedGoogle Scholar
  2. 2.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090.  https://doi.org/10.1126/science.aaa6090CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coskun AF, Cai L (2016) Dense transcript profiling in single cells by image correlation decoding. Nat Methods 13:6–11.  https://doi.org/10.1038/nmeth.3895CrossRefGoogle Scholar
  4. 4.
    Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C et al (2017) The Drosophila embryo at single-cell transcriptome resolution. Science 3235:eaan3235.  https://doi.org/10.1126/science.aan3235CrossRefGoogle Scholar
  5. 5.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502.  https://doi.org/10.1038/nbt.3192CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D et al (2015) High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 33:503–509.  https://doi.org/10.1038/nbt.3209CrossRefPubMedGoogle Scholar
  7. 7.
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82.  https://doi.org/10.1126/science.aaf2403CrossRefPubMedGoogle Scholar
  8. 8.
    Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L et al (2016) CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77.  https://doi.org/10.1186/s13059-016-0938-8CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep 2:666–673.  https://doi.org/10.1016/j.celrep.2012.08.003CrossRefPubMedGoogle Scholar
  10. 10.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166.  https://doi.org/10.1038/nmeth.2772CrossRefPubMedGoogle Scholar
  11. 11.
    Junker JP, Noël ES, Guryev V, Peterson KA, Shah G, Huisken J et al (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159:662–675.  https://doi.org/10.1016/j.cell.2014.09.038CrossRefPubMedGoogle Scholar
  12. 12.
    Lacraz GPA, Junker JP, Gladka MM, Molenaar B, Scholman KT, Vigil-Garcia M et al (2017) Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136(15):1396–1409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Berlin Institute for Medical Systems Biology, MDC BerlinBerlinGermany

Personalised recommendations