Modeling Embryonic Cleavage Patterns

  • Dmitry Ershov
  • Nicolas MincEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)


The division patterns of early invertebrate and vertebrate embryos are key to the specification of cell fates and embryo body axes. We here describe a generic computational modeling method to quantitatively test mechanisms which specify successive division position and orientation of eggs and early blastomeres in 3D. This approach should serve to motivate and guide future experimental work on the mechanisms controlling early embryo morphogenesis.

Key words

Early embryos Division positioning Microtubules Asters Cell shape Maternal domain Yolk 



We thank Anaëlle Pierre and Benjamin Blanchard for their initial contribution to the model. This research was supported by the CNRS and grants from the “Mairie de Paris emergence” program, the FRM “amorçage” grant AJE20130426890, and the European Research Council (CoG Forcaster N° 647073).


  1. 1.
    Gilbert S (2010) Developmental biology, 9th edn. Developmental Biology Sinauer Associates, Sunderland (MA)Google Scholar
  2. 2.
    Pelegri F, Dekens MP, Schulte-Merker S, Maischein HM, Weiler C, Nusslein-Volhard C (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 231(2):324–335. CrossRefGoogle Scholar
  3. 3.
    Olivier N, Luengo-Oroz MA, Duloquin L, Faure E, Savy T, Veilleux I, Solinas X, Debarre D, Bourgine P, Santos A, Peyrieras N, Beaurepaire E (2010) Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329(5994):967–971CrossRefGoogle Scholar
  4. 4.
    Hertwig O (1884) Das Problem der Befruchtung une der Isotropie des Eies, eine Theory der Vererbung. Jenaische ZeitschristGoogle Scholar
  5. 5.
    Hertwig O (1893) Ueber den Werth der ersten Furchungszellen fuer die Organbildung des Embryo. Experimentelle Studien am Frosch- und Tritonei. Arch mikr Anat xlii:662–807CrossRefGoogle Scholar
  6. 6.
    Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144(3):414–426CrossRefGoogle Scholar
  7. 7.
    Wuhr M, Tan ES, Parker SK, Detrich HW, 3rd, Mitchison TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20 (22):2040–2045. doi: CrossRefGoogle Scholar
  8. 8.
    Neff AW, Wakahara M, Jurand A, Malacinski GM (1984) Experimental analyses of cytoplasmic rearrangements which follow fertilization and accompany symmetrization of inverted Xenopus eggs. J Embryol Exp Morphol 80:197–224PubMedGoogle Scholar
  9. 9.
    Yokota H, Neff AW, Malacinski GM (1992) Altering the position of the first horizontal cleavage furrow of the amphibian (Xenopus) egg reduces embryonic survival. Int J Dev Biol 36(4):527–535PubMedGoogle Scholar
  10. 10.
    Sardet C, Paix A, Prodon F, Dru P, Chenevert J (2007) From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236(7):1716–1731. CrossRefPubMedGoogle Scholar
  11. 11.
    Dan K (1979) Studies on unequal cleavage in sea urchins I. Migration of the nuclei to the vegetal pole. Develop Growth Differ 21(6):527–535CrossRefGoogle Scholar
  12. 12.
    Leonard JD, Ettensohn CA (2007) Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 306(1):50–65CrossRefGoogle Scholar
  13. 13.
    Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9(5):355–366. CrossRefPubMedGoogle Scholar
  14. 14.
    Mitchison T, Wuhr M, Nguyen P, Ishihara K, Groen A, Field CM (2012) Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton 69(10):738–750. CrossRefPubMedGoogle Scholar
  15. 15.
    Hasley A, Chavez S, Danilchik M, Wuhr M, Pelegri F (2017) Vertebrate embryonic cleavage pattern determination. Adv Exp Med Biol 953:117–171. CrossRefPubMedGoogle Scholar
  16. 16.
    Pierre A, Sallé J, Wühr M, Minc N (2016) Generic theoretic models to predict division patterns of cleaving embryos. Dev Cell 39:1–16CrossRefGoogle Scholar
  17. 17.
    Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165CrossRefGoogle Scholar
  18. 18.
    Grill SW, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8(4):461–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Jacques Monod, CNRS UMR7592ParisFrance
  2. 2.Université Paris DiderotParisFrance

Personalised recommendations