Advertisement

Methods for Isolating the Balbiani Body/Germplasm from Xenopus laevis Oocytes

  • Amanda Butler
  • Dawn Owens
  • Mary Lou King
  • Tristan AgueroEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)

Abstract

The Balbiani body (Bb) is a large membrane-less organelle, densely packed with mitochondria, endoplasmic reticulum, proteins, and RNA. The Bb is present in many vertebrate female gametes. In frogs, the Bb is established early during oogenesis and operates as a maternal inherited embryonic determinant that specifies germline identity through the formation of germplasm. We describe here two techniques to isolate the Bb/germplasm from Xenopus laevis primary oocytes.

Key words

Balbiani body-mitochondria cloud Germplasm Germ cells Oogenesis Xenopus 

References

  1. 1.
    King ML (2014) Germ-cell specification in xenopus. In: Xenopus development. John Wiley & Sons, Inc., New York, pp 75–100CrossRefGoogle Scholar
  2. 2.
    Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11(1):37–49CrossRefGoogle Scholar
  3. 3.
    Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 313(8):1639–1651CrossRefGoogle Scholar
  4. 4.
    Kloc M, Bilinski S, Etkin LD (2004) The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36CrossRefGoogle Scholar
  5. 5.
    Aguero T, Kassmer S, Alberio R, Johnson A, King ML (2017) Mechanisms of vertebrate germ cell determination. Adv Exp Med Biol 953:383–440CrossRefGoogle Scholar
  6. 6.
    Aguero T, Zhou Y, Kloc M, Chang P, Houliston E, King ML (2016) Hermes (Rbpms) is a critical component of RNP complexes that sequester germline RNAs during oogenesis. J Dev Biol 4(1).  https://doi.org/10.3390/jdb4010002CrossRefGoogle Scholar
  7. 7.
    Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266(1):43–61CrossRefGoogle Scholar
  8. 8.
    Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121(2):287–297PubMedGoogle Scholar
  9. 9.
    Makita R, Mizuno T, Koshida S, Kuroiwa A, Takeda H (1998) Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity. Mech Dev 71(1–2):165–176CrossRefGoogle Scholar
  10. 10.
    Nojima H, Rothhamel S, Shimizu T, Kim CH, Yonemura S, Marlow FL et al (2010) Syntabulin, a motor protein linker, controls dorsal determination. Development 137(6):923–933CrossRefGoogle Scholar
  11. 11.
    Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 15(10):4669–4681CrossRefGoogle Scholar
  12. 12.
    Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM (2016) Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 366(1):191–201CrossRefGoogle Scholar
  13. 13.
    Bilinski SM, Kloc M, Tworzydlo W (2017) Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 34(11):1405–1412CrossRefGoogle Scholar
  14. 14.
    Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136(2):153–179CrossRefGoogle Scholar
  15. 15.
    Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM (2014) Balbiani body, nuage and sponge bodies – term plasm pathway players. Arthropod Struct Dev 43(4):341–348CrossRefGoogle Scholar
  16. 16.
    Boke E, Mitchison TJ (2017) The Balbiani body and the concept of physiological amyloids. Cell Cycle 16(2):153–154CrossRefGoogle Scholar
  17. 17.
    Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137(4):651–660CrossRefGoogle Scholar
  18. 18.
    Schisa J (2012) Chapter seven - new insights into the regulation of RNP granule assembly in oocytes. In: Jeon KW (ed) International review of cell and molecular biology, vol 295. Academic Press, Cambridege, pp 233–289Google Scholar
  19. 19.
    Chan AP, Kloc M, Bilinski S, Etkin LD (2001) The vegetally localized mRNA fatvg is associated with the germ plasm in the early embryo and is later expressed in the fat body. Mech Dev 100(1):137–140CrossRefGoogle Scholar
  20. 20.
    Forristall C, Pondel M, Chen L, King ML (1995) Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121(1):201–208PubMedGoogle Scholar
  21. 21.
    Tada H, Mochii M, Orii H, Watanabe K (2012) Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 371(1):86–93CrossRefGoogle Scholar
  22. 22.
    Yamaguchi T, Taguchi A, Watanabe K, Orii H (2013) DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis. Biol Open 2(2):191–199CrossRefGoogle Scholar
  23. 23.
    Newman K, Aguero T, King ML (2018) Isolation of Xenopus oocytes. Cold Spring Harb Protoc 2018(2):pdb.prot095851CrossRefGoogle Scholar
  24. 24.
    Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML (2017) High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 144(2):292–304CrossRefGoogle Scholar
  25. 25.
    Butler AM, Aguero T, Newman KM, King ML (2017) Primordial germ cell isolation from Xenopus laevis embryos. Methods Mol Biol 1463:115–124CrossRefGoogle Scholar
  26. 26.
    King ML, Davis R (1987) Do Xenopus oocytes have a heat shock response? Dev Biol 119(2):532–539CrossRefGoogle Scholar
  27. 27.
    Boke E, Ruer M, Wuhr M, Coughlin M, Lemaitre R, Gygi SP et al (2016) Amyloid-like self-assembly of a cellular compartment. Cell 166(3):637–650CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amanda Butler
    • 1
  • Dawn Owens
    • 1
  • Mary Lou King
    • 1
  • Tristan Aguero
    • 1
    • 2
    Email author
  1. 1.Department of Cell Biology, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Department of Developmental BiologyINSIBIO (CONICET-Tucuman National University)TucumanArgentina

Personalised recommendations