Advertisement

Ex Utero Culture and Imaging of Mouse Embryos

  • Sonja Nowotschin
  • Vidur Garg
  • Anna Piliszek
  • Anna-Katerina HadjantonakisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1920)

Abstract

Mouse genetic approaches when combined with live imaging tools are revolutionizing our current understanding of mammalian developmental biology. The availability and improvement of a wide variety of genetically encoded fluorescent proteins have provided indispensable tools to visualize cells and subcellular features in living organisms. It is now possible to generate genetically modified mouse lines expressing several spectrally distinct fluorescent proteins in a tissue-specific or -inducible manner. Such reporter-expressing lines make it possible to image dynamic cellular behaviors in the context of living embryos undergoing normal or aberrant development. As with all viviparous mammals, mouse embryos develop within the uterus, and so live imaging experiments require culture conditions that closely mimic the in vivo environment. Over the past decades, significant advances have been made in developing conditions for culturing both pre- and postimplantation-stage mouse embryos. In this chapter, we discuss routine methods for ex utero culture of preimplantation- and postimplantation-stage mouse embryos. In particular, we describe protocols for collecting mouse embryos of various stages, setting up culture conditions for their ex utero culture and imaging, and using laser scanning confocal microscopy to visualize live processes in mouse embryos expressing fluorescent reporters.

Key words

Mouse embryo Ex utero culture Time-lapse Imaging Reporter Fluorescent protein GFP RFP Confocal 

Notes

Acknowledgments

We thank our present and past laboratory colleagues for helping perfect the techniques detailed in this chapter. Work in our laboratory is supported by the National Institutes of Health (R01DK084391, R01HD094868, and P30CA008748) and The Starr Foundation.

References

  1. 1.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069.  https://doi.org/10.1126/science.1162493CrossRefPubMedGoogle Scholar
  2. 2.
    Megason SG, Fraser SE (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120(11):1407–1420CrossRefGoogle Scholar
  3. 3.
    Hadjantonakis AK, Dickinson ME, Fraser SE, Papaioannou VE (2003) Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4(8):613–625.  https://doi.org/10.1038/nrg1126CrossRefPubMedGoogle Scholar
  4. 4.
    Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol 27(5):266–276.  https://doi.org/10.1016/j.tibtech.2009.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dickinson ME (2006) Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn 235(9):2386–2400.  https://doi.org/10.1002/dvdy.20889CrossRefPubMedGoogle Scholar
  6. 6.
    Viotti M, Nowotschin S, Hadjantonakis AK (2014) SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 16(12):1146–1156.  https://doi.org/10.1038/ncb3070CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33.  https://doi.org/10.1186/1472-6750-4-33CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA et al (2005) Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 42(3):162–171.  https://doi.org/10.1002/gene.20139CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE et al (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434(7031):391–395.  https://doi.org/10.1038/nature03388CrossRefPubMedGoogle Scholar
  10. 10.
    Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135(18):3081–3091.  https://doi.org/10.1242/dev.021519CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xenopoulos P, Kang M, Puliafito A, Di Talia S, Hadjantonakis AK (2015) Heterogeneities in nanog expression drive stable commitment to pluripotency in the mouse blastocyst. Cell Rep.  https://doi.org/10.1016/j.celrep.2015.02.010CrossRefGoogle Scholar
  12. 12.
    Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J et al (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44(4):202–218.  https://doi.org/10.1002/dvg.20203CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chi X, Hadjantonakis AK, Wu Z, Hyink D, Costantini F (2009) A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis 47(2):61–66.  https://doi.org/10.1002/dvg.20452CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Larina IV, Shen W, Kelly OG, Hadjantonakis AK, Baron MH, Dickinson ME (2009) A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken) 292(3):333–341.  https://doi.org/10.1002/ar.20821CrossRefGoogle Scholar
  15. 15.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99(12):7877–7882.  https://doi.org/10.1073/pnas.082243699CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hadjantonakis AK, Macmaster S, Nagy A (2002) Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol 2:11CrossRefGoogle Scholar
  17. 17.
    Long JZ, Lackan CS, Hadjantonakis AK (2005) Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol 5:20.  https://doi.org/10.1186/1472-6750-5-20CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572.  https://doi.org/10.1038/nbt1037CrossRefPubMedGoogle Scholar
  19. 19.
    Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 47(5):330–336.  https://doi.org/10.1002/dvg.20500CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40.  https://doi.org/10.1186/1741-7007-6-40CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jones EA, Baron MH, Fraser SE, Dickinson ME (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 287(4):H1561–H1569.  https://doi.org/10.1152/ajpheart.00081.2004CrossRefPubMedGoogle Scholar
  22. 22.
    Kwon GS, Hadjantonakis AK (2007) Eomes::GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis 45(4):208–217.  https://doi.org/10.1002/dvg.20293CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Srinivas S, Goldberg MR, Watanabe T, D’Agati V, al-Awqati Q, Costantini F (1999) Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genet 24(3–4):241–251.  https://doi.org/10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-RCrossRefPubMedGoogle Scholar
  24. 24.
    Kwon GS, Hadjantonakis AK (2009) Transthyretin mouse transgenes direct RFP expression or Cre-mediated recombination throughout the visceral endoderm. Genesis 47(7):447–455.  https://doi.org/10.1002/dvg.20522CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Freyer L, Schroter C, Saiz N, Schrode N, Nowotschin S, Martinez-Arias A et al (2015) A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice. BMC Dev Biol 15:38.  https://doi.org/10.1186/s12861-015-0086-5CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wu T, Hadjantonakis AK, Nowotschin S (2017) Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 6(5):678–687.  https://doi.org/10.1242/bio.024638CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nowotschin S, Xenopoulos P, Schrode N, Hadjantonakis AK (2013) A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev Biol 13:15.  https://doi.org/10.1186/1471-213X-13-15CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M (2009) Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev Biol 331(2):210–221.  https://doi.org/10.1016/j.ydbio.2009.04.036CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perea-Gomez A, Meilhac SM, Piotrowska-Nitsche K, Gray D, Collignon J, Zernicka-Goetz M (2007) Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev Biol 7:96.  https://doi.org/10.1186/1471-213X-7-96CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nowotschin S, Hadjantonakis AK (2009) Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev Biol 9(1):49.  https://doi.org/10.1186/1471-213X-9-49CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Develop Growth Differ 55(4):390–405.  https://doi.org/10.1111/dgd.12062CrossRefGoogle Scholar
  32. 32.
    Sutherland AE, Speed TP, Calarco PG (1990) Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol 137(1):13–25CrossRefGoogle Scholar
  33. 33.
    Lehtonen E (1980) Changes in cell dimensions and intercellular contacts during cleavage-stage cell cycles in mouse embryonic cells. J Embryol Exp Morphol 58:231–249PubMedGoogle Scholar
  34. 34.
    Flint OP, Ede DA (1982) Cell interactions in the developing somite: in vitro comparisons between amputated (am/am) and normal mouse embryos. J Embryol Exp Morphol 67:113–125PubMedGoogle Scholar
  35. 35.
    Dickinson ME, Simbuerger E, Zimmermann B, Waters CW, Fraser SE (2003) Multiphoton excitation spectra in biological samples. J Biomed Opt 8(3):329–338.  https://doi.org/10.1117/1.1583734CrossRefPubMedGoogle Scholar
  36. 36.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009.  https://doi.org/10.1126/science.1100035CrossRefGoogle Scholar
  37. 37.
    Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572.  https://doi.org/10.1016/j.gde.2011.09.009CrossRefPubMedGoogle Scholar
  38. 38.
    Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G et al (2016) Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev Cell 36(2):225–240.  https://doi.org/10.1016/j.devcel.2015.12.028CrossRefPubMedGoogle Scholar
  39. 39.
    Amat F, Hockendorf B, Wan Y, Lemon WC, McDole K, Keller PJ (2015) Efficient processing and analysis of large-scale light-sheet microscopy data. Nat Protoc 10(11):1679–1696.  https://doi.org/10.1038/nprot.2015.111CrossRefPubMedGoogle Scholar
  40. 40.
    Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK, Dickinson ME (2014) Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development 141(22):4406–4414.  https://doi.org/10.1242/dev.111021CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH, Mochizuki A et al (2013) Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS One 8(7):e64506.  https://doi.org/10.1371/journal.pone.0064506CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH, Mochizuki A et al (2014) Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat Protoc 9(3):575–585.  https://doi.org/10.1038/nprot.2014.035CrossRefPubMedGoogle Scholar
  43. 43.
    Lou X, Kang M, Xenopoulos P, Munoz-Descalzo S, Hadjantonakis AK (2014) A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports 2(3):382–397.  https://doi.org/10.1016/j.stemcr.2014.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saiz N, Kang M, Schrode N, Lou X, Hadjantonakis AK (2016) Quantitative analysis of protein expression to study lineage specification in mouse preimplantation embryos. J Vis Exp (108):53654.  https://doi.org/10.3791/53654
  45. 45.
    Kang M, Garg V, Hadjantonakis AK (2017) Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev Cell 41(5):496–510.e495.  https://doi.org/10.1016/j.devcel.2017.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schrode N, Saiz N, Di Talia S, Hadjantonakis AK (2014) GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 29(4):454–467.  https://doi.org/10.1016/j.devcel.2014.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Copp AJ, Cockroft DL (1990) Postimplantation mammalian embryos. A practical approach. IRL, OxfordGoogle Scholar
  48. 48.
    Downs KM, Davies T (1993) Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118(4):1255–1266PubMedGoogle Scholar
  49. 49.
    Theiler K (1989) The house mouse. Atlas of embryonic development. Springer-Verlag, New York, NYCrossRefGoogle Scholar
  50. 50.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  51. 51.
    Jones EA, Crotty D, Kulesa PM, Waters CW, Baron MH, Fraser SE et al (2002) Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34(4):228–235.  https://doi.org/10.1002/gene.10162CrossRefPubMedGoogle Scholar
  52. 52.
    Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13(6):884–896.  https://doi.org/10.1016/j.devcel.2007.10.016CrossRefPubMedGoogle Scholar
  53. 53.
    Moore-Scott BA, Gordon J, Blackburn CC, Condie BG, Manley NR (2003) New serum-free in vitro culture technique for midgestation mouse embryos. Genesis 35(3):164–168.  https://doi.org/10.1002/gene.10179CrossRefPubMedGoogle Scholar
  54. 54.
    Keller-Peck CR, Walsh MK, Gan WB, Feng G, Sanes JR, Lichtman JW (2001) Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31(3):381–394CrossRefGoogle Scholar
  55. 55.
    Cahalan MD, Parker I, Wei SH, Miller MJ (2003) Real-time imaging of lymphocytes in vivo. Curr Opin Immunol 15(4):372–377CrossRefGoogle Scholar
  56. 56.
    Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28(12):1022–1024CrossRefGoogle Scholar
  57. 57.
    Puri S, Hebrok M (2007) Dynamics of embryonic pancreas development using real-time imaging. Dev Biol 306(1):82–93.  https://doi.org/10.1016/j.ydbio.2007.03.003CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sonja Nowotschin
    • 1
  • Vidur Garg
    • 1
  • Anna Piliszek
    • 2
  • Anna-Katerina Hadjantonakis
    • 1
    Email author
  1. 1.Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Experimental EmbryologyInstitute of Genetics and Animal Breeding, Polish Academy of SciencesJastrzębiecPoland

Personalised recommendations