Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons

  • Marcel M. DaadiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1919)


Dopaminergic (DA) neurons are involved in many critical functions within the central nervous system (CNS), and dopamine neurotransmission impairment underlies a wide range of disorders from motor control deficiencies, such as Parkinson’s disease (PD), to psychiatric disorders, such as alcoholism, drug addictions, bipolar disorders, schizophrenia and depression. Neural stem cell-based technology has potential to play an important role in developing efficacious biological and small molecule therapeutic products for disorders with dopamine dysregulation. Various methods of differentiating DA neurons from pluripotent stem cells have been reported. In this chapter, we describe a simple technique using dopamine-inducing factors (DIFs) to differentiate neural stem cells (NSCs), isolated from induced pluripotent stem cells (iPSCs) into DA neurons.

Key words

Self-renewable neural stem cells iPSCs Dopaminergic neuron differentiation 



This work was supported by NeoNeuron LLC.

Disclosures: Dr. Marcel M. Daadi is founder of the biotech company NeoNeuron.


  1. 1.
    Isacson O (2003) The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2(7):417–424PubMedCrossRefGoogle Scholar
  2. 2.
    Brazel CY, Rao MS (2004) Aging and neuronal replacement. Ageing Res Rev 3(4):465–483PubMedCrossRefGoogle Scholar
  3. 3.
    Björklund A et al (1987) Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. TINS 10(12):509–516Google Scholar
  4. 4.
    Jonsson ME et al (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219(1):341–354PubMedCrossRefGoogle Scholar
  5. 5.
    Carvey PM et al (2001) A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 171(1):98–108PubMedCrossRefGoogle Scholar
  6. 6.
    Zeng X et al (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22(6):925–940PubMedCrossRefGoogle Scholar
  7. 7.
    Chiba S et al (2008) Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells 26(11):2810–2820PubMedCrossRefGoogle Scholar
  8. 8.
    Hedlund E et al (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells 26(6):1526–1536PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kriks S et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Arenas E (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 396(1):152–156PubMedCrossRefGoogle Scholar
  11. 11.
    O'Keeffe FE et al (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131(Pt 3):630–641PubMedCrossRefGoogle Scholar
  12. 12.
    Mendez I et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14(5):507–509PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Deierborg T et al (2008) Emerging restorative treatments for Parkinson's disease. Prog Neurobiol 85(4):407–432PubMedCrossRefGoogle Scholar
  14. 14.
    Redmond DE Jr et al (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sonntag KC et al (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25(2):411–418PubMedCrossRefGoogle Scholar
  16. 16.
    Ko JY et al (2007) Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem 103(4):1417–1429PubMedCrossRefGoogle Scholar
  17. 17.
    Yasuhara T et al (2006) Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci 26(48):12497–12511PubMedCrossRefGoogle Scholar
  18. 18.
    Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096PubMedCrossRefGoogle Scholar
  19. 19.
    Mendez I et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 128(Pt 7):1498–1510PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Correia AS et al (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37(7):487–498PubMedCrossRefGoogle Scholar
  21. 21.
    Bjorklund A (2005) Cell therapy for Parkinson’s disease: problems and prospects. Novartis Found Symp 265:174–186 Discussion 187, 204–211PubMedGoogle Scholar
  22. 22.
    Roy NS et al (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268PubMedCrossRefGoogle Scholar
  23. 23.
    Armstrong RJ et al (2003) Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 151(2):204–217PubMedCrossRefGoogle Scholar
  24. 24.
    Ben-Hur T et al (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22(7):1246–1255PubMedCrossRefGoogle Scholar
  25. 25.
    Borlongan CV, Sanberg PR (2002) Neural transplantation for treatment of Parkinson’s disease. Drug Discov Today 7(12):674–682PubMedCrossRefGoogle Scholar
  26. 26.
    Daadi MM et al (2012) Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One 7(7):e41120PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Grealish S et al (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133(Pt 2):482–495PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim JH et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56PubMedCrossRefGoogle Scholar
  29. 29.
    Lee SH et al (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679PubMedCrossRefGoogle Scholar
  30. 30.
    Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40PubMedCrossRefGoogle Scholar
  31. 31.
    Perrier AL et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101(34):12543–12548PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hong S et al (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104(2):316–324PubMedGoogle Scholar
  33. 33.
    Yan Y et al (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schulz TC et al (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22(7):1218–1238PubMedCrossRefGoogle Scholar
  35. 35.
    Vazin T et al (2009) A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 4(8):e6606PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hayashi H et al (2008) Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur J Neurosci 27(2):261–268PubMedCrossRefGoogle Scholar
  37. 37.
    Cho MS et al (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105(9):3392–3397PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ko JY et al (2009) Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol Ther 17(10):1761–1770PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ueno M et al (2006) Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc Natl Acad Sci U S A 103(25):9554–9559PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kim DW et al (2006) Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem Cells 24(3):557–567PubMedCrossRefGoogle Scholar
  41. 41.
    Cai J et al (2009) The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson’s disease model. Stem Cells 27(1):220–229PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioUSA
  2. 2.Department of Radiology, Research Imaging Institute, Cell Systems and Anatomy, Long School of MedicineUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations