Generation of Definitive Neural Progenitor Cells from Human Pluripotent Stem Cells for Transplantation into Spinal Cord Injury

  • Mohamad Khazaei
  • Christopher S. Ahuja
  • Christopher E. Rodgers
  • Priscilla Chan
  • Michael G. FehlingsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1919)


In this chapter, we first describe two interchangeable protocols optimized in our lab for deriving definitive neuronal progenitor cells from human pluripotent stem cells (hPSCs). The resultant NPCs can then be propagated and differentiated to produce differing proportions of neurons, oligodendrocytes, and astrocytes as required for in vitro cell culture studies or in vivo transplantation. Following these protocols, we explain the method for transplanting these cells into the rat model of spinal cord injury (SCI).

Key words

Neural progenitor cells Pluripotent stem cells Cell transplantation Spinal cord injury 


  1. 1.
    Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedCrossRefGoogle Scholar
  2. 2.
    Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  3. 3.
    Emgård M, Piao J, Aineskog H et al (2014) Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Exp Neurol 253:138–145PubMedCrossRefGoogle Scholar
  4. 4.
    Keirstead HS, Nistor G, Bernal G et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705PubMedCrossRefGoogle Scholar
  5. 5.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389PubMedCrossRefGoogle Scholar
  6. 6.
    Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tao Y, Zhang S-C (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19:573–586PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Salewski RP, Buttigieg J, Mitchell RA et al (2013) The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev 22:383–396PubMedCrossRefGoogle Scholar
  9. 9.
    Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490PubMedCrossRefGoogle Scholar
  10. 10.
    Wen Y, Jin S (2014) Production of neural stem cells from human pluripotent stem cells. J Biotechnol 188:122–129PubMedCrossRefGoogle Scholar
  11. 11.
    Smukler SR, Runciman SB, Xu S et al (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl MedGoogle Scholar
  14. 14.
    Ahuja CS, Martin AR, Fehlings M (2016) Recent advances in managing a spinal cord injury secondary to trauma. F1000Res 5Google Scholar
  15. 15.
    Forgione N, Karadimas SK, Foltz WD et al (2014) Bilateral contusion-compression model of incomplete traumatic cervical spinal cord injury. J Neurotrauma 31:1776–1788PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wilcox JT, Satkunendrarajah K, Nasirzadeh Y et al (2017) Generating level-dependent models of cervical and thoracic spinal cord injury: exploring the interplay of neuroanatomy, physiology, and function. Neurobiol Dis 105:194–212PubMedCrossRefGoogle Scholar
  17. 17.
    Khazaei M, Ahuja CS, Fehlings MG (2017) Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 4Google Scholar
  18. 18.
    Ahuja CS, Wilson JR, Nori S et al (2017) Traumatic spinal cord injury. Nat Rev Dis Primer 3:17018CrossRefGoogle Scholar
  19. 19.
    Tsuji O, Miura K, Okada Y et al (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci 107:12704–12709PubMedCrossRefGoogle Scholar
  20. 20.
    Nori S, Okada Y, Yasuda A et al (2011) Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci 108:16825–16830PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi Y, Okada Y, Itakura G et al (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7:e52787PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:1657–1676PubMedCrossRefGoogle Scholar
  23. 23.
    Alexanian AR, Svendsen CN, Crowe MJ et al (2011) Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia. Cytotherapy 13:61–68PubMedCrossRefGoogle Scholar
  24. 24.
    Emgård M, Holmberg L, Samuelsson E-B et al (2009) Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord. Brain Res 1278:15–26PubMedCrossRefGoogle Scholar
  25. 25.
    Woo S-M, Kim J, Han H-W et al (2009) Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci 10:97PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamad Khazaei
    • 1
  • Christopher S. Ahuja
    • 1
    • 2
    • 3
  • Christopher E. Rodgers
    • 1
    • 2
  • Priscilla Chan
    • 1
    • 2
  • Michael G. Fehlings
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Division of Genetics and DevelopmentKrembil Research InstituteTorontoCanada
  2. 2.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  3. 3.Division of NeurosurgeryUniversity of TorontoTorontoCanada
  4. 4.Spinal Program, Toronto Western HospitalUniversity Health NetworkTorontoCanada
  5. 5.Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations