Skip to main content

Network Biology Approaches to Identify Molecular and Systems-Level Differences Between Salmonella Pathovars

  • Protocol
  • First Online:
Foodborne Bacterial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1918))

Abstract

The field of systems biology endeavors to map, study, and simulate cellular systems and their underlying mechanisms. The internal mechanisms of biological systems can be represented with networks comprising nodes and edges. Nodes denote the constituents of the biological system whereas edges indicate the relationships among them. Likewise, every layer of cellular organization can be represented by networks. Multilayered networks capture interactions between various network types, such as transcriptional regulatory networks, protein–protein interaction networks, and metabolic networks from the same biological system. This property makes multilayered networks representative of the system while its internal mechanisms are investigated. However, there are not many multilayered networks containing integrated data for nonmodel organisms including the bacterial pathogens Salmonella. Here, we outline the steps to create such an integrated network database, through the example of SalmoNet, the first integrated multilayered data resource for multiple strains belonging to distinct Salmonella serovars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majowicz SE, Musto J, Scallan E et al (2010) The global burden of nontyphoidal salmonella gastroenteritis. Clin Infect Dis 50:882–889. https://doi.org/10.1086/650733

    Article  PubMed  Google Scholar 

  2. Guirguis GF, Patel K, Gittens-Williams L et al (2017) Salmonella enterica serotype typhi bacteremia complicating pregnancy in the third trimester. Case Rep Obstet Gynecol 2017:4018096. https://doi.org/10.1155/2017/4018096

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mohanty S, Gaind R, Paglietti B et al (2010) Bacteraemia with pleural effusions complicating typhoid fever caused by high-level ciprofloxacin-resistant salmonella enterica serotype Typhi. Ann Trop Paediatr 30:233–240. https://doi.org/10.1179/146532810X12786388978760

    Article  CAS  PubMed  Google Scholar 

  4. MĂ©tris A, Sudhakar P, Fazekas D et al (2017) SalmoNet, an integrated network of ten salmonella enterica strains reveals common and distinct pathways to host adaptation. NPJ Syst Biol Appl 3:31. https://doi.org/10.1038/s41540-017-0034-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen H, Sharp BM (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147. https://doi.org/10.1186/1471-2105-5-147

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664. https://doi.org/10.1038/ng0704-664

    Article  CAS  PubMed  Google Scholar 

  7. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. https://doi.org/10.1093/nar/gkr1088

    Article  CAS  PubMed  Google Scholar 

  8. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10:47–53. https://doi.org/10.1038/nmeth.2289

    Article  CAS  PubMed  Google Scholar 

  9. Kreimer A, Borenstein E, Gophna U, Ruppin E (2008) The evolution of modularity in bacterial metabolic networks. Proc Natl Acad Sci U S A 105:6976–6981. https://doi.org/10.1073/pnas.0712149105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thiele I, Hyduke DR, Steeb B et al (2011) A community effort towards a knowledge-base and mathematical model of the human pathogen salmonella Typhimurium LT2. BMC Syst Biol 5:8. https://doi.org/10.1186/1752-0509-5-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chelliah V, Juty N, Ajmera I et al (2015) BioModels: ten-year anniversary. Nucleic Acids Res 43:D542–D548. https://doi.org/10.1093/nar/gku1181

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien KP, Remm M, Sonnhammer ELL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33:D476–D480. https://doi.org/10.1093/nar/gki107

    Article  PubMed  Google Scholar 

  13. Nichio BTL, Marchaukoski JN, Raittz RT (2017) New tools in orthology analysis: a brief review of promising perspectives. Front Genet 8:165. https://doi.org/10.3389/fgene.2017.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu H, Luscombe NM, Lu HX et al (2004) Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 14:1107–1118. https://doi.org/10.1101/gr.1774904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiliç S, White ER, Sagitova DM et al (2014) CollecTF: a database of experimentally validated transcription factor-binding sites in bacteria. Nucleic Acids Res 42:D156–D160. https://doi.org/10.1093/nar/gkt1123

    Article  CAS  PubMed  Google Scholar 

  16. Gama-Castro S, Salgado H, Santos-Zavaleta A et al (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44:D133–D143. https://doi.org/10.1093/nar/gkv1156

    Article  CAS  PubMed  Google Scholar 

  17. Grote A, Klein J, Retter I et al (2009) PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res 37:D61–D65. https://doi.org/10.1093/nar/gkn837

    Article  CAS  PubMed  Google Scholar 

  18. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medina-Rivera A, Defrance M, Sand O et al (2015) RSAT 2015: regulatory sequence analysis tools. Nucleic Acids Res 43:W50–W56. https://doi.org/10.1093/nar/gkv362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15:563–577

    Article  CAS  Google Scholar 

  21. Medina-Rivera A, Abreu-Goodger C, Thomas-Chollier M et al (2011) Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39:808–824. https://doi.org/10.1093/nar/gkq710

    Article  CAS  PubMed  Google Scholar 

  22. Haycocks JRJ, Grainger DC (2016) Unusually situated binding sites for bacterial transcription factors can have hidden functionality. PLoS One 11:e0157016. https://doi.org/10.1371/journal.pone.0157016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turatsinze J-V, Thomas-Chollier M, Defrance M, van Helden J (2008) Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat Protoc 3:1578–1588. https://doi.org/10.1038/nprot.2008.97

    Article  CAS  PubMed  Google Scholar 

  24. Nelson AC, Wardle FC (2013) Conserved non-coding elements and cis regulation: actions speak louder than words. Development 140:1385–1395. https://doi.org/10.1242/dev.084459

    Article  CAS  PubMed  Google Scholar 

  25. Sierro N, Makita Y, de Hoon M, Nakai K (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36:D93–D96. https://doi.org/10.1093/nar/gkm910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge all the contributors of the SalmoNet resource as well as the helpful discussions from the members and visitors of the Baranyi, Korcsmaros, and Kingsley groups. This work was supported by a fellowship to T.K. in computational biology at the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK), and strategically supported by the Biotechnological and Biosciences Research Council, UK grants (BB/J004529/1, BB/P016774/1, and BB/CSP17270/1). This work was also supported by the BBSRC Norwich Research Park Biosciences Doctoral Training Partnership grant number BB/M011216/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Korcsmaros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olbei, M., Kingsley, R.A., Korcsmaros, T., Sudhakar, P. (2019). Network Biology Approaches to Identify Molecular and Systems-Level Differences Between Salmonella Pathovars. In: Bridier, A. (eds) Foodborne Bacterial Pathogens. Methods in Molecular Biology, vol 1918. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9000-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9000-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8999-7

  • Online ISBN: 978-1-4939-9000-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics