Direct or DNA Extraction-Free Amplification and Quantification of Foodborne Pathogens

  • Maggie R. Williams
  • Syed A. Hashsham
Part of the Methods in Molecular Biology book series (MIMB, volume 1918)


The use of direct nucleic acid amplification of pathogens from food matrices has the potential to reduce time to results over DNA extraction-based approaches as well as traditional culture-based approaches. Here we describe protocols for assay design and experiments for direct amplification of foodborne pathogens in food sample matrices using loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The examples provided include the detection Escherichia coli in milk samples and Salmonella in pork meat samples. This protocol includes relevant reagents and methods including obtaining target sequences, assay design, sample processing, and amplification. These methods, though used for specific example matrices, could be applied to many other foodborne pathogens and sample types.

Key words

Direct amplification Direct loop-mediated isothermal amplification Direct polymerase chain reaction Foodborne pathogens 



Support for this research was provided in part by a grant from the National Institute of Environmental Health Sciences, National Institutes of Health grant number P42ES04911-26.


  1. 1.
    Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domi G, González-zorn B, Wehland J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640CrossRefGoogle Scholar
  2. 2.
    Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733CrossRefGoogle Scholar
  3. 3.
    Skarp CPA, Hänninen ML, Rautelin HIK (2016) Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 22:103–109CrossRefGoogle Scholar
  4. 4.
    Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  5. 5.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545CrossRefGoogle Scholar
  7. 7.
    Hiett KL, Cox NA, Stern NJ (2002) Direct polymerase chain reaction detection of Campylobacter spp. in poultry hatchery samples. Avian Dis 46:219–223CrossRefGoogle Scholar
  8. 8.
    Winters DK, O’Leary AE, Slavik MF (1997) Rapid PCR with nested primers for direct detection of Campylobacter jejuni in chicken washes. Mol Cell Probes 11:267–271CrossRefGoogle Scholar
  9. 9.
    Wang F, Jiang L, Ge B (2012) Loop-mediated isothermal amplification assays for detecting Shiga toxin-producing Escherichia coli in ground beef and human stools. J Clin Microbiol 50:91–97CrossRefGoogle Scholar
  10. 10.
    Han F, Ge B (2008) Evaluation of a loop-mediated isothermal amplification assay for detecting Vibrio vulnificus in raw oysters. Foodborne Pathog Dis 5:311–320CrossRefGoogle Scholar
  11. 11.
    Koloren Z, Sotiriadou I, Karanis P (2011) Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of Ordu, middle Black Sea, Turkey. Ann Trop Med Parasitol 105:607–615CrossRefGoogle Scholar
  12. 12.
    Chin WH, Sun Y, Høgberg J, Quyen TL, Engelsmann P, Wolff A, Bang DD (2017) Direct PCR – a rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples. Mol Cell Probes 32:24–32CrossRefGoogle Scholar
  13. 13.
    Plante D, Bélanger G, Leblanc D, Ward P, Houde A, Trottier YL (2011) The use of bovine serum albumin to improve the RT-qPCR detection of foodborne viruses rinsed from vegetable surfaces. Lett Appl Microbiol 52:239–244CrossRefGoogle Scholar
  14. 14.
    Wolffs PFG, Glencross K, Thibaudeau R, Griffiths MW (2006) Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl Environ Microbiol 72:3896–3900CrossRefGoogle Scholar
  15. 15.
    Wang L, Li P, Zhang Z, Chen Q, Aguilar ZP, Xu H, Yang L, Xu F, Lai W, Xiong Y, Wei H (2014) Rapid and accurate detection of viable Escherichia coli O157: H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control 36:119–125CrossRefGoogle Scholar
  16. 16.
    Jenïkovâ G, Pazlarovâ J, Demnerovâ K (2000) Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int Microbiol 3:225–229PubMedGoogle Scholar
  17. 17.
    Amagliani G, Brandi G, Omiccioli E, Casiere A, Bruce IJ, Magnani M (2004) Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR. Food Microbiol 21:597–603CrossRefGoogle Scholar
  18. 18.
    You DJ, Geshell KJ, Yoon JY (2011) Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device. Biosens Bioelectron 28:399–406CrossRefGoogle Scholar
  19. 19.
    Stedtfeld RD, Tourlousse DM, Seyrig G, Stedtfeld TM, Kronlein M, Price S, Ahmad F, Gulari E, Tiedje JM, Hashsham SA (2012) Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip 12:1454–1462CrossRefGoogle Scholar
  20. 20.
    Williams MR, Stedtfeld RD, Engle C, Salach P, Fakher U, Stedtfeld T, Dreelin E, Stevenson RJ, Latimore J, Hashsham SA (2017) Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS One 12:e0186462CrossRefGoogle Scholar
  21. 21.
    Stedtfeld RD, Liu Y-C, Stedtfeld TM, Kostic T, Kronlein MR, Srivannavit O, Khalife WT, Tiedje JM, Gulari E, Hughes M, Etchebarne B, Hashsham SA (2015) Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed Microdevices 17:89CrossRefGoogle Scholar
  22. 22.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42CrossRefGoogle Scholar
  23. 23.
    Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154CrossRefGoogle Scholar
  24. 24.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63CrossRefGoogle Scholar
  25. 25.
    Tomita N, Mori Y, Hidetoshi K, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882CrossRefGoogle Scholar
  26. 26.
    Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229CrossRefGoogle Scholar
  27. 27.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134CrossRefGoogle Scholar
  28. 28.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  29. 29.
    Henke W, Herdel K, Jung K, Schnorr D, Loening SA (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res 25:3957–3958CrossRefGoogle Scholar
  30. 30.
    Njiru ZK (2011) Rapid and sensitive detection of human African trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Diagn Microbiol Infect Dis 69:205–209CrossRefGoogle Scholar
  31. 31.
    Zhou D, Guo J, Xu L, Gao S, Lin Q, Wu Q, Wu L, Que Y (2014) Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane. Sci Rep 4:1–8Google Scholar
  32. 32.
    Modak SS, Barber CA, Geva E, Abrams WR, Malamud D, Serge Y, Ongagna Y (2016) Rapid point-of-care isothermal amplification assay for the detection of malaria without nucleic acid purification. Infect Dis Res Treat 9:1–9Google Scholar
  33. 33.
    Luk VN, Mo GC, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389CrossRefGoogle Scholar
  34. 34.
    Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622CrossRefGoogle Scholar
  35. 35.
    Mashooq M, Kumar D, Niranjan AK, Agarwal RK, Rathore R (2016) Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: a new tool for DNA quantification. J Microbiol Methods 126:24–29CrossRefGoogle Scholar
  36. 36.
    Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, Jin L, Takeo S, Tsuboi T (2007) Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45:2521–2528CrossRefGoogle Scholar
  37. 37.
    O’Regan E, McCabe E, Burgess C, McGuinness S, Barry T, Duffy G, Whyte P, Fanning S (2008) Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC Microbiol 8:1–11CrossRefGoogle Scholar
  38. 38.
    Josefsen MH, Krause M, Hansen F, Hoorfar J (2007) Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl Environ Microbiol 73:3040–3048CrossRefGoogle Scholar
  39. 39.
    Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal database project. Nucleic Acids Res 21:3021–3023CrossRefGoogle Scholar
  40. 40.
    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291CrossRefGoogle Scholar
  41. 41.
    McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357CrossRefGoogle Scholar
  42. 42.
    Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T (2007) MvirDB--a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35:D391–D394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations