High Content Screening Confocal Laser Microscopy (HCS-CLM) to Characterize Biofilm 4D Structural Dynamic of Foodborne Pathogens

  • Alexis Canette
  • Julien Deschamps
  • Romain BriandetEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1918)


The functional properties of biofilms are intimately related to their spatial architecture. Structural data are therefore of prime importance to dissect the complex social and survival strategies of biofilms and ultimately to improve their control. Confocal laser microscopy (CLM) is the most widespread microscopic tool to decipher biofilm structure, enabling noninvasive 3D investigation of their dynamics down to single cell scale. The emergence of fully automated high content screening (HCS) systems, associated with large-scale image analysis, radically amplifies the flow of available biofilm structural data. In this contribution, we present an HCS-CLM protocol used to analyze biofilm 4D structural dynamics at high throughput. Meta-analysis of the quantitative variates extracted from HCS-CLM will contribute to a better biological understanding of biofilm traits.

Key words

Confocal laser microscopy High content screening Biofilm architecture Image analysis 


  1. 1.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefGoogle Scholar
  2. 2.
    Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84PubMedGoogle Scholar
  3. 3.
    Bridier A, Tischenko E, Dubois-Brissonnet F et al (2011) Deciphering biofilm structure and reactivity by multiscale time-resolved fluorescence analysis. Adv Exp Med Biol 715:333–349CrossRefGoogle Scholar
  4. 4.
    Bridier A, Briandet R (2014) Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity. Methods Mol Biol 1147:255–266. Scholar
  5. 5.
    Canette A, Briandet R (2014) Microscopy chapter: confocal laser scanning microscopy. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology, vol 2. Elsevier, Academic Press, pp 676–683Google Scholar
  6. 6.
    Heydorn A, Nielsen AT, Hentzer M et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407CrossRefGoogle Scholar
  7. 7.
    Xavier JB, White DC, Almeida JS (2003) Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Sci Technol 47:31–37CrossRefGoogle Scholar
  8. 8.
    Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213CrossRefGoogle Scholar
  9. 9.
    Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional bio lm structure quantification. J Microbiol Methods 59:395–413CrossRefGoogle Scholar
  10. 10.
    Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524CrossRefGoogle Scholar
  11. 11.
    Bridier A, Dubois-Brissonnet F, Boubetra A et al (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70CrossRefGoogle Scholar
  12. 12.
    Vorregaard M (2008) Comstat—a modern 3D image analysis environment for biofilms. Informatics and Mathematical Modelling. Technical University of Denmark, Kongens LyngbyGoogle Scholar
  13. 13.
    Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexis Canette
    • 1
    • 2
  • Julien Deschamps
    • 1
  • Romain Briandet
    • 1
    Email author
  1. 1.Micalis Institute, INRA, AgroParisTechUniversité Paris-SaclayJouy-en-JosasFrance
  2. 2.IBPS InstituteSorbonne Université, CNRS, INSERMParisFrance

Personalised recommendations